Ryan Hossaini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A temperature dependent extreme value analysis of UK surface ozone, 1980–2019. Atmospheric Environment, 2022, 273, 118975.	4.1	9
2	A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations. Atmospheric Chemistry and Physics, 2022, 22, 903-916.	4.9	7
3	Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nature Communications, 2022, 13, 2768.	12.8	20
4	Cloud-scale modelling of the impact of deep convection on the fate of oceanic bromoform in the troposphere: a case study over the west coast of Borneo. Atmospheric Chemistry and Physics, 2021, 21, 16955-16984.	4.9	1
5	Rapid increase in dichloromethane emissions from China inferred through atmospheric observations. Nature Communications, 2021, 12, 7279.	12.8	24
6	Renewed and emerging concerns over the production and emission of ozone-depleting substances. Nature Reviews Earth & Environment, 2020, 1, 251-263.	29.7	32
7	Bromine from short-lived source gases in the extratropical northern hemispheric upper troposphere and lower stratosphere (UTLS). Atmospheric Chemistry and Physics, 2020, 20, 4105-4132.	4.9	19
8	Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change, 2020, 10, 147-154.	18.8	37
9	A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons: Dichloromethane, and Perchloroethylene. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031818.	3.3	18
10	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	3.2	52
11	Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine. Atmospheric Chemistry and Physics, 2020, 20, 8405-8419.	4.9	21
12	Recent Trends in Stratospheric Chlorine From Very Shortâ€Lived Substances. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2318-2335.	3.3	34
13	On the Regional and Seasonal Ozone Depletion Potential of Chlorinated Very Shortâ€Lived Substances. Geophysical Research Letters, 2019, 46, 5489-5498.	4.0	21
14	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	4.9	353
15	Phosgene in the Upper Troposphere and Lower Stratosphere: A Marker for Product Gas Injection Due to Chlorineâ€Containing Very Short Lived Substances. Geophysical Research Letters, 2019, 46, 1032-1039.	4.0	10
16	Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nature Communications, 2019, 10, 5781.	12.8	58
17	Attribution of recent increases in atmospheric methane through 3-D inverse modelling. Atmospheric Chemistry and Physics, 2018, 18, 18149-18168.	4.9	51
18	Cluster-based analysis of multi-model climate ensembles. Geoscientific Model Development, 2018, 11, 2033-2048	3.6	4

RYAN HOSSAINI

#	Article	IF	CITATIONS
19	On the Cause of Recent Variations in Lower Stratospheric Ozone. Geophysical Research Letters, 2018, 45, 5718-5726.	4.0	87
20	Stratospheric Injection of Brominated Very Short‣ived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	3.3	36
21	Detecting recovery of the stratospheric ozone layer. Nature, 2017, 549, 211-218.	27.8	182
22	The increasing threat to stratospheric ozone from dichloromethane. Nature Communications, 2017, 8, 15962.	12.8	147
23	Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine. Atmospheric Chemistry and Physics, 2017, 17, 1161-1186.	4.9	25
24	A new Differential Optical Absorption Spectroscopy instrument to study atmospheric chemistry from a high-altitude unmanned aircraft. Atmospheric Measurement Techniques, 2017, 10, 1017-1042.	3.1	20
25	A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,271.	3.3	86
26	On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone. Geophysical Research Letters, 2016, 43, 7241-7249.	4.0	43
27	A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine. Atmospheric Chemistry and Physics, 2016, 16, 9163-9187.	4.9	51
28	Model sensitivity studies of the decrease in atmospheric carbon tetrachloride. Atmospheric Chemistry and Physics, 2016, 16, 15741-15754.	4.9	5
29	Growth in stratospheric chlorine from shortâ€lived chemicals not controlled by the Montreal Protocol. Geophysical Research Letters, 2015, 42, 4573-4580.	4.0	42
30	Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions. Atmospheric Chemistry and Physics, 2015, 15, 11753-11772.	4.9	28
31	Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. Nature Geoscience, 2015, 8, 186-190.	12.9	146
32	Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3â€Ð model study. Geophysical Research Letters, 2015, 42, 3038-3047.	4.0	47
33	Reaction between CH ₃ O ₂ and BrO Radicals: A New Source of Upper Troposphere Lower Stratosphere Hydroxyl Radicals. Journal of Physical Chemistry A, 2015, 119, 4618-4632.	2.5	18
34	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107.	27.8	110
35	Constraining the N ₂ O ₅ UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 9555-9566.	4.9	4
36	Evaluating global emission inventories of biogenic bromocarbons. Atmospheric Chemistry and Physics, 2013, 13, 11819-11838.	4.9	66

#	Article	IF	CITATIONS
37	The contribution of oceanic methyl iodide to stratospheric iodine. Atmospheric Chemistry and Physics, 2013, 13, 11869-11886.	4.9	42
38	Atmospheric test of the J(BrONO ₂)/ <i>k</i> <sub&g ratio: implications for total stratospheric Br_y and bromine-mediated ozone loss. Atmospheric Chemistry and Physics, 2013, 13, 6263-6274.</sub&g 	;t;BrO+NC 4.9) <sub 21</sub
39	The contribution of natural and anthropogenic very short-lived species to stratospheric bromine. Atmospheric Chemistry and Physics, 2012, 12, 371-380.	4.9	63
40	Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons. Geophysical Research Letters, 2012, 39, .	4.0	38
41	Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 2671-2687.	4.9	52
42	Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry and transport. Atmospheric Chemistry and Physics, 2010, 10, 719-735.	4.9	112