
## Thomas R Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327433/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using<br>Gubbins. Nucleic Acids Research, 2015, 43, e15-e15.                                                                                                                     | 14.5 | 1,834     |
| 2  | A tale of three next generation sequencing platforms: comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics, 2012, 13, 341.                                                                                                              | 2.8  | 1,601     |
| 3  | Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in<br><i>Klebsiella pneumoniae</i> , an urgent threat to public health. Proceedings of the National Academy<br>of Sciences of the United States of America, 2015, 112, E3574-81. | 7.1  | 942       |
| 4  | Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021, 184, 64-75.e11.                                                                                                                                                  | 28.9 | 843       |
| 5  | Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature Genetics, 2013, 45, 109-113.                                                                                                                                                      | 21.4 | 669       |
| 6  | Evidence for several waves of global transmission in the seventh cholera pandemic. Nature, 2011, 477, 462-465.                                                                                                                                                                | 27.8 | 649       |
| 7  | Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infectious Diseases, The, 2022, 22, 35-42.                                                                   | 9.1  | 612       |
| 8  | Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software. Molecular<br>Biology and Evolution, 2013, 30, 1224-1228.                                                                                                                                  | 8.9  | 568       |
| 9  | Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves<br>Relapsing Clostridium difficile Disease in Mice. PLoS Pathogens, 2012, 8, e1002995.                                                                                      | 4.7  | 504       |
| 10 | Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.                                                                                                                                           | 6.4  | 375       |
| 11 | Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan<br>Africa. Nature Genetics, 2012, 44, 1215-1221.                                                                                                                                | 21.4 | 370       |
| 12 | Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science, 2021, 371, 708-712.                                                                                                                                                                         | 12.6 | 335       |
| 13 | Distinguishable Epidemics of Multidrug-Resistant <i>Salmonella</i> Typhimurium DT104 in Different<br>Hosts. Science, 2013, 341, 1514-1517.                                                                                                                                    | 12.6 | 310       |
| 14 | Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer. Cell, 2012, 148,<br>780-791.                                                                                                                                                              | 28.9 | 300       |
| 15 | Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Science of the Total Environment, 2020, 749, 141364.                                                                          | 8.0  | 293       |
| 16 | SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .                                                                                                                                                                                                      | 12.6 | 278       |
| 17 | Patterns of genome evolution that have accompanied host adaptation in <i>Salmonella</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 863-868.                                                                             | 7.1  | 213       |
| 18 | Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infectious Diseases, The, 2015, 15, 913-921.                                                                                                | 9.1  | 204       |

2

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution.<br>Nature Genetics, 2014, 46, 1321-1326.                                             | 21.4 | 192       |
| 20 | Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Eurosurveillance, 2014, 19, 20954.            | 7.0  | 188       |
| 21 | Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to<br>June 2020. Eurosurveillance, 2020, 25, .                                            | 7.0  | 186       |
| 22 | Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell, 2021, 184, 5179-5188.e8.                                                                       | 28.9 | 182       |
| 23 | Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Research, 2012, 40, e6-e6.                                                            | 14.5 | 179       |
| 24 | A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. Journal of Invertebrate Pathology, 2021, 186, 107438.                           | 3.2  | 177       |
| 25 | CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community. Microbial Genomics, 2016, 2, e000086.                           | 2.0  | 176       |
| 26 | Salmonella bongori Provides Insights into the Evolution of the Salmonellae. PLoS Pathogens, 2011, 7, e1002191.                                                                            | 4.7  | 171       |
| 27 | Hyper-Recombination, Diversity, and Antibiotic Resistance in Pneumococcus. Science, 2009, 324, 1454-1457.                                                                                 | 12.6 | 164       |
| 28 | Microevolution of Monophasic <i>Salmonella</i> Typhimurium during Epidemic, United Kingdom,<br>2005–2010. Emerging Infectious Diseases, 2016, 22, 617-624.                                | 4.3  | 158       |
| 29 | Parallel independent evolution of pathogenicity within the genus <i>Yersinia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6768-6773. | 7.1  | 154       |
| 30 | An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid. Nature Communications, 2016, 7, 12827.                                                | 12.8 | 145       |
| 31 | Cryptic ecology among host generalist <i>Campylobacter jejuni</i> in domestic animals. Molecular<br>Ecology, 2014, 23, 2442-2451.                                                         | 3.9  | 131       |
| 32 | Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiology, 2007, 7, 30.                                                                       | 3.3  | 123       |
| 33 | Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 2021, 200, 117214.                         | 11.3 | 117       |
| 34 | Signatures of Adaptation in Human Invasive Salmonella Typhimurium ST313 Populations from<br>Sub-Saharan Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003611.                      | 3.0  | 116       |
| 35 | Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.                                             | 12.6 | 111       |
| 36 | Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium<br>Burkholderia ambifaria. Nature Microbiology, 2019, 4, 996-1005.                       | 13.3 | 106       |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Zoonotic Transfer of Clostridium difficile Harboring Antimicrobial Resistance between Farm Animals<br>and Humans. Journal of Clinical Microbiology, 2018, 56, .                                                                                    | 3.9  | 102       |
| 38 | Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. ELife, 2015, 4, e07335.                                                                                                   | 6.0  | 94        |
| 39 | Peptide–MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and<br>Underestimate Antigen-Reactive T Cell Populations. Journal of Immunology, 2018, 200, 2263-2279.                                                      | 0.8  | 87        |
| 40 | Sequencing and Functional Annotation of Avian Pathogenic Escherichia coli Serogroup O78 Strains<br>Reveal the Evolution of E. coli Lineages Pathogenic for Poultry via Distinct Mechanisms. Infection and<br>Immunity, 2013, 81, 838-849.          | 2.2  | 82        |
| 41 | Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nature Reviews Genetics, 2022, 23, 547-562.                                                                                                 | 16.3 | 70        |
| 42 | Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2<br>Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar. MBio, 2013, 4, e00565-13.                                                                 | 4.1  | 57        |
| 43 | Historical Zoonoses and Other Changes in Host Tropism of Staphylococcus aureus, Identified by<br>Phylogenetic Analysis of a Population Dataset. PLoS ONE, 2013, 8, e62369.                                                                         | 2.5  | 55        |
| 44 | Characterization of Plasmids in Extensively Drug-Resistant Acinetobacter Strains Isolated in India and Pakistan. Antimicrobial Agents and Chemotherapy, 2015, 59, 923-929.                                                                         | 3.2  | 54        |
| 45 | CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biology, 2021, 22, 196.                                                                                                        | 8.8  | 53        |
| 46 | Emergence of a New Epidemic Neisseria meningitidis Serogroup A Clone in the African Meningitis Belt:<br>High-Resolution Picture of Genomic Changes That Mediate Immune Evasion. MBio, 2014, 5, e01974-14.                                          | 4.1  | 51        |
| 47 | Understanding and responding to COVID-19 in Wales: protocol for a privacy-protecting data platform for enhanced epidemiology and evaluation of interventions. BMJ Open, 2020, 10, e043010.                                                         | 1.9  | 50        |
| 48 | Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa. PLoS Neglected<br>Tropical Diseases, 2016, 10, e0004781.                                                                                                       | 3.0  | 46        |
| 49 | Use of Whole-Genus Genome Sequence Data To Develop a Multilocus Sequence Typing Tool That<br>Accurately Identifies Yersinia Isolates to the Species and Subspecies Levels. Journal of Clinical<br>Microbiology, 2015, 53, 35-42.                   | 3.9  | 45        |
| 50 | Retrospective analysis of whole genome sequencing compared to prospective typing data in further informing the epidemiological investigation of an outbreak of <i>Shigella sonnei</i> in the UK. Epidemiology and Infection, 2013, 141, 2568-2575. | 2.1  | 42        |
| 51 | Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean:<br>advancing global surveillance of foodborne illnesses. Clinical Microbiology and Infection, 2017, 23,<br>845-853.                                       | 6.0  | 37        |
| 52 | Population structure in the <i>Neisseria</i> , and the biological significance of fuzzy species. Journal of the Royal Society Interface, 2012, 9, 1208-1215.                                                                                       | 3.4  | 33        |
| 53 | Novel R Pipeline for Analyzing Biolog Phenotypic Microarray Data. PLoS ONE, 2015, 10, e0118392.                                                                                                                                                    | 2.5  | 29        |
| 54 | What's in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages<br>of Salmonella enterica Serotype Paratyphi B. MBio, 2016, 7, .                                                                                 | 4.1  | 29        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large<br>multireplicon genomes. Microbial Genomics, 2019, 5, .                                                                            | 2.0  | 26        |
| 56 | Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles. Microbial Genomics, 2021, 7, .                                                                   | 2.0  | 24        |
| 57 | Population subdivision and the detection of recombination in non-typable Haemophilus influenzae.<br>Microbiology (United Kingdom), 2012, 158, 2958-2964.                                                                             | 1.8  | 24        |
| 58 | Travel- and Community-Based Transmission of Multidrug-ResistantShigellasonneiLineage among<br>International Orthodox Jewish Communities. Emerging Infectious Diseases, 2016, 22, 1545-1553.                                          | 4.3  | 23        |
| 59 | Retrospective Analysis of Serotype Switching of Vibrio cholerae O1 in a Cholera Endemic Region<br>Shows It Is a Non-random Process. PLoS Neglected Tropical Diseases, 2016, 10, e0005044.                                            | 3.0  | 23        |
| 60 | HIGH-FREQUENCY failure of combination antiretroviral therapy in paediatric HIV infection is<br>associated with unmet maternal needs causing maternal NON-ADHERENCE. EClinicalMedicine, 2020, 22,<br>100344.                          | 7.1  | 23        |
| 61 | Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study<br>Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. Journal of<br>Immunology, 2016, 197, 971-982. | 0.8  | 21        |
| 62 | Combined epidemiological and genomic analysis of nosocomial SARS-CoV-2 infection early in the pandemic and the role of unidentified cases in transmission. Clinical Microbiology and Infection, 2022, 28, 93-100.                    | 6.0  | 21        |
| 63 | Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contextual data specification package. GigaScience, 2022, 11, .                                                                                        | 6.4  | 18        |
| 64 | Bayesian semi-supervised classification of bacterial samples using MLST databases. BMC Bioinformatics, 2011, 12, 302.                                                                                                                | 2.6  | 17        |
| 65 | Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne<br>Biosynthetic Gene Cluster Diversity. MBio, 2021, 12, e0071521.                                                                            | 4.1  | 16        |
| 66 | Epidemiological analysis of the first 1000 cases of SARSâ€CoVâ€2 lineage BA.1 (B.1.1.529, Omicron) compared with coâ€circulating Delta in Wales, UK. Influenza and Other Respiratory Viruses, 2022, 16, 986-993.                     | 3.4  | 13        |
| 67 | Evaluation of methods for detecting human reads in microbial sequencing datasets. Microbial Genomics, 2020, 6, .                                                                                                                     | 2.0  | 11        |
| 68 | The consistent differential expression of genetic pathways following exposure of an industrial<br>Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation. FEMS<br>Microbiology Letters, 2018, 365, .     | 1.8  | 10        |
| 69 | Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission.<br>Nature Communications, 2022, 13, 1012.                                                                                              | 12.8 | 10        |
| 70 | Genomic Assemblies of Members of <i>Burkholderia</i> and Related Genera as a Resource for Natural<br>Product Discovery. Microbiology Resource Announcements, 2020, 9, .                                                              | 0.6  | 9         |
| 71 | The Type III Secretion System Effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp.<br>arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis. Infection and Immunity, 2016, 84,<br>3618-3628.            | 2.2  | 7         |
| 72 | Travel- and Community-Based Transmission of Multidrug-ResistantShigellasonneiLineage among<br>International Orthodox Jewish Communities. Emerging Infectious Diseases, 2016, 22, 1545-1553.                                          | 4.3  | 5         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Genome Sequences of Three <i>Paraburkholderia</i> sp. Strains Isolated from Wood-Decay Fungi<br>Reveal Them as Novel Species with Antimicrobial Biosynthetic Potential. Microbiology Resource<br>Announcements, 2019, 8, . | 0.6 | 3         |
| 74 | Influenza classification from short reads with VAPOR facilitates robust mapping pipelines and zoonotic strain detection for routine surveillance applications. Bioinformatics, 2020, 36, 1681-1688.                            | 4.1 | 3         |
| 75 | Automated Cloud Brokerage Based Upon Continuous Real-Time Benchmarking. , 2015, , .                                                                                                                                            |     | 3         |
| 76 | Genomics reveals the novel species placement of industrial contaminant isolates incorrectly identified as Burkholderia lata. Microbial Genomics, 2021, 7, .                                                                    | 2.0 | 2         |
| 77 | Genome Sequence of Pluralibacter gergoviae ECO77, a Multireplicon Isolate of Industrial Origin.<br>Microbiology Resource Announcements, 2020, 9, .                                                                             | 0.6 | 2         |
| 78 | Scalable Pathogen Pipeline Platform (SP^3): Enabling Unified Genomic Data Analysis with Elastic Cloud Computing. , 2019, , .                                                                                                   |     | 1         |
| 79 | Multilocus Models of Bacterial Population Genetics. , 0, , 93-104.                                                                                                                                                             |     | 0         |