
## Brian K Kaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327136/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. New England Journal of Medicine, 2017, 377, 1713-1722.                                                                                                                                  | 27.0 | 1,642     |
| 2  | Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nature<br>Biotechnology, 2009, 27, 59-65.                                                                                                                                | 17.5 | 1,157     |
| 3  | Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature<br>Biotechnology, 2011, 29, 824-828.                                                                                                                                | 17.5 | 696       |
| 4  | Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral<br>Sclerosis. Neuron, 2014, 81, 1009-1023.                                                                                                                     | 8.1  | 527       |
| 5  | The C9orf72 protein interacts with Rab1a and the <scp>ULK</scp> 1 complex to regulate initiation of autophagy. EMBO Journal, 2016, 35, 1656-1676.                                                                                                         | 7.8  | 327       |
| 6  | Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response<br>Study in Mice and Nonhuman Primates. Molecular Therapy, 2015, 23, 477-487.                                                                              | 8.2  | 217       |
| 7  | A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy. Molecular Therapy, 2015, 23, 192-201.                                                                                                                                          | 8.2  | 193       |
| 8  | Therapeutic AAV9-mediated Suppression of Mutant SOD1 Slows Disease Progression and Extends<br>Survival in Models of Inherited ALS. Molecular Therapy, 2013, 21, 2148-2159.                                                                                | 8.2  | 178       |
| 9  | Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6993-7002.              | 7.1  | 165       |
| 10 | Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in<br>familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United<br>States of America, 2006, 103, 19546-19551. | 7.1  | 140       |
| 11 | Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>E6496-E6505.                                                     | 7.1  | 139       |
| 12 | Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. Journal of Neuroscience, 2015, 35, 1274-1290.                                                                                                                     | 3.6  | 138       |
| 13 | Delayed Disease Onset and Extended Survival in the SOD1 <sup>G93A</sup> Rat Model of Amyotrophic<br>Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex. Journal of Neuroscience,<br>2014, 34, 15587-15600.                            | 3.6  | 116       |
| 14 | Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nature Medicine, 2016, 22, 397-403.                                                                            | 30.7 | 112       |
| 15 | Virusâ€delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Annals of Neurology, 2005, 57, 773-776.                                                                                                                          | 5.3  | 108       |
| 16 | NEUROD1 Instructs Neuronal Conversion in Non-Reactive Astrocytes. Stem Cell Reports, 2017, 8, 1506-1515.                                                                                                                                                  | 4.8  | 106       |
| 17 | SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.                                                                                  | 12.8 | 106       |
| 18 | Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1.<br>Neuron, 2015, 86, 218-232.                                                                                                                            | 8.1  | 98        |

BRIAN K KASPAR

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | AAV1.NT-3 Gene Therapy for Charcot–Marie–Tooth Neuropathy. Molecular Therapy, 2014, 22, 511-521.                                                                                                                                                            | 8.2  | 86        |
| 20 | Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes.<br>Molecular Therapy, 2017, 25, 870-879.                                                                                                                        | 8.2  | 84        |
| 21 | Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in<br>Machado-Joseph disease mice. Brain, 2015, 138, 320-335.                                                                                                | 7.6  | 78        |
| 22 | Electrophysiological biomarkers in spinal muscular atrophy: proof of concept. Annals of Clinical and<br>Translational Neurology, 2014, 1, 34-44.                                                                                                            | 3.7  | 55        |
| 23 | Intravenous Injections in Neonatal Mice. Journal of Visualized Experiments, 2014, , e52037.                                                                                                                                                                 | 0.3  | 41        |
| 24 | Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy. Journal of<br>Neuromuscular Diseases, 2015, 2, 185-192.                                                                                                                          | 2.6  | 34        |
| 25 | Adeno Associated Virus 9–Based Gene Therapy Delivers a Functional Monocarboxylate Transporter 8,<br>Improving Thyroid Hormone Availability to the Brain of Mct8-Deficient Mice. Thyroid, 2016, 26, 1311-1319.                                               | 4.5  | 34        |
| 26 | Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs.<br>Molecular Therapy - Methods and Clinical Development, 2016, 3, 16046.                                                                                 | 4.1  | 34        |
| 27 | Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078.                                                                                             | 10.3 | 33        |
| 28 | An NF-κB - EphrinA5-Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes<br>Muscle Growth in Neonates. Developmental Cell, 2016, 36, 215-224.                                                                                     | 7.0  | 33        |
| 29 | Translating SOD1 Gene Silencing toward the Clinic: A Highly Efficacious, Off-Target-free, and<br>Biomarker-Supported Strategy for fALS. Molecular Therapy - Nucleic Acids, 2018, 12, 75-88.                                                                 | 5.1  | 33        |
| 30 | Glia–neuron interactions in neurological diseases: Testing non-cell autonomy in a dish. Brain<br>Research, 2017, 1656, 27-39.                                                                                                                               | 2.2  | 30        |
| 31 | Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Human Molecular<br>Genetics, 2018, 27, 2187-2204.                                                                                                                           | 2.9  | 26        |
| 32 | MiR-155 deletion reduces ischemia-induced paralysis in an aortic aneurysm repair mouse model: Utility<br>of immunohistochemistry and histopathology in understanding etiology of spinal cord paralysis.<br>Annals of Diagnostic Pathology, 2018, 36, 12-20. | 1.3  | 22        |
| 33 | lbuprofen enhances synaptic function and neural progenitors proliferation markers and improves<br>neuropathology and motor coordination in Machado–Joseph disease models. Human Molecular<br>Genetics, 2019, 28, 3691-3703.                                 | 2.9  | 21        |
| 34 | rAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended<br>Pathology Beyond the Central Nervous System. Molecular Therapy, 2016, 24, 1030-1041.                                                                     | 8.2  | 18        |
| 35 | HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons. Experimental Neurology, 2017, 297, 101-109.                                                                                                | 4.1  | 18        |
| 36 | Mesenchymal Stem Cells as Trojan Horses for GDNF Delivery in ALS. Molecular Therapy, 2008, 16,<br>1905-1906.                                                                                                                                                | 8.2  | 15        |

BRIAN K KASPAR

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | AAV9-MCT8 Delivery at Juvenile Stage Ameliorates Neurological and Behavioral Deficits in a Mouse<br>Model of MCT8-Deficiency. Thyroid, 2022, 32, 849-859.                                                       | 4.5 | 14        |
| 38 | Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits<br>in CLN6-Batten disease mice. Molecular Therapy - Methods and Clinical Development, 2021, 20, 497-507. | 4.1 | 13        |
| 39 | Follistatin-induced muscle hypertrophy in aged mice improves neuromuscular junction innervation and function. Neurobiology of Aging, 2021, 104, 32-41.                                                          | 3.1 | 11        |
| 40 | Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal<br>Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells, 2022, 11, 1186.    | 4.1 | 11        |
| 41 | High content analysis in amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences, 2017, 80, 180-191.                                                                                                | 2.2 | 10        |
| 42 | Conditional deletion of SMN in cell culture identifies functional SMN alleles. Human Molecular<br>Genetics, 2021, 29, 3477-3492.                                                                                | 2.9 | 9         |
| 43 | Sox11 is an Activity-Regulated Gene with Dentate-Gyrus-Specific Expression Upon General Neural Activation. Cerebral Cortex, 2020, 30, 3731-3743.                                                                | 2.9 | 7         |
| 44 | Making Sense of Pain: Are Pluripotent Stem Cell–derived Sensory Neurons a New Tool for Studying<br>Pain Mechanisms?. Molecular Therapy, 2014, 22, 1403-1405.                                                    | 8.2 | 6         |
| 45 | Active and passive immunization strategies based on the SDPM1 peptide demonstrate pre-clinical efficacy in the APPswePSEN1dE9 mouse model for Alzheimer's disease. Neurobiology of Disease, 2014, 62, 31-43.    | 4.4 | 5         |
| 46 | Voluntary wheel running with and without follistatin overexpression improves NMJ transmission but not motor unit loss in late life of C57BL/6J mice. Neurobiology of Aging, 2021, 101, 285-296.                 | 3.1 | 5         |