
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325831/publications.pdf Version: 2024-02-01

ΒΕΛΤΛ ΠΙΛΛΟΙ

#	Article	IF	CITATIONS
1	Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. Science of the Total Environment, 2022, 803, 149923.	8.0	17
2	The evolution and ecology of benign tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188643.	7.4	23
3	Odors and cancer: Current status and future directions. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188644.	7.4	27
4	Season, weight, and age, but not transmissible cancer, affect tick loads in the endangered Tasmanian devil. Infection, Genetics and Evolution, 2022, 98, 105221.	2.3	4
5	Cancer risk across mammals. Nature, 2022, 601, 263-267.	27.8	86
6	Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the "Perfect Storm―Theory. Pathogens, 2022, 11, 241.	2.8	3
7	Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (<i>Sarcophilus harrisii</i>). Molecular Ecology, 2022, 31, 2293-2311.	3.9	3
8	A novel perspective suggesting high sustained energy expenditure may be net protective against cancer. Evolution, Medicine and Public Health, 2022, 10, 170-176.	2.5	5
9	Telomeres, the loop tying cancer to organismal lifeâ€histories. Molecular Ecology, 2022, 31, 6273-6285.	3.9	6
10	Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	6
11	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
12	Cancer risk landscapes: A framework to study cancer in ecosystems. Science of the Total Environment, 2021, 763, 142955.	8.0	23
13	Transmissible cancers in mammals and bivalves: How many examples are there?. BioEssays, 2021, 43, e2000222.	2.5	27
14	Erosion of cooperation in ageing tissue enables the emergence of the cancer phenotype. BioEssays, 2021, 43, 2000301.	2.5	1
15	Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 877-892.	3.1	58
16	Group phenotypic composition in cancer. ELife, 2021, 10, .	6.0	18
17	Linking pollution and cancer in aquatic environments: A review. Environment International, 2021, 149, 106391.	10.0	42
18	Genetic structure and gene flow in the Flame Robin (<i>Petroica phoenicea</i>). Emu, 2021, 121, 160-165.	0.6	1

#	Article	IF	CITATIONS
19	Does Cancer Biology Rely on Parrondo's Principles?. Cancers, 2021, 13, 2197.	3.7	7
20	A review of the potential effects of climate change on disseminated neoplasia with an emphasis on efficient detection in marine bivalve populations. Science of the Total Environment, 2021, 775, 145134.	8.0	21
21	Is There One Key Step in the Metastatic Cascade?. Cancers, 2021, 13, 3693.	3.7	26
22	Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods in Ecology and Evolution, 2021, 12, 2310-2323.	5.2	1
23	Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Frontiers in Oncology, 2021, 11, 732081.	2.8	3
24	On the need for integrating cancer into the One Health perspective. Evolutionary Applications, 2021, 14, 2571-2575.	3.1	9
25	Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens, 2021, 10, 1295.	2.8	16
26	Ecoâ€evolutionary perspectives of the dynamic relationships linking senescence and cancer. Functional Ecology, 2020, 34, 141-152.	3.6	14
27	The evolution of resistance and tolerance as cancer defences. Parasitology, 2020, 147, 255-262.	1.5	10
28	Spontaneous activity rates and resting metabolism: Support for the allocation model of energy management at the amongâ€individual level. Ethology, 2020, 126, 32-39.	1.1	11
29	Will urbanisation affect the expression level of genes related to cancer of wild great tits?. Science of the Total Environment, 2020, 714, 135793.	8.0	7
30	Transmissible Cancers in an Evolutionary Perspective. IScience, 2020, 23, 101269.	4.1	33
31	Can Energetic Capacity Help Explain Why Physical Activity Reduces Cancer Risk?. Trends in Cancer, 2020, 6, 829-837.	7.4	11
32	The interface between ecology, evolution, and cancer: More than ever a relevant research direction for both oncologists and ecologists. Evolutionary Applications, 2020, 13, 1545-1549.	3.1	6
33	Ecological and Evolutionary Consequences of Anticancer Adaptations. IScience, 2020, 23, 101716.	4.1	10
34	Do malignant cells sleep at night?. Genome Biology, 2020, 21, 276.	8.8	24
35	Long term effects of outbreeding: experimental founding of island population eliminates malformations and improves hatching success in sand lizards. Biological Conservation, 2020, 249, 108710.	4.1	4
36	Genetic rescue restores long-term viability of an isolated population of adders (Vipera berus). Current Biology, 2020, 30, R1297-R1299.	3.9	8

#	Article	IF	CITATIONS
37	High numbers of unrelated reproductives in the Australian â€~higher' termite Nasutitermes exitiosus (Blattodea: Termitidae). Insectes Sociaux, 2020, 67, 281-294.	1.2	1
38	The ecology and evolution of wildlife cancers: Applications for management and conservation. Evolutionary Applications, 2020, 13, 1719-1732.	3.1	30
39	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	8.0	3
40	Global metaâ€analysis of over 50Âyears of multidisciplinary and international collaborations on transmissible cancers. Evolutionary Applications, 2020, 13, 1745-1755.	3.1	8
41	Rare and unique adaptations to cancer in domesticated species: An untapped resource?. Evolutionary Applications, 2020, 13, 1605-1614.	3.1	11
42	Predation shapes the impact of cancer on population dynamics and the evolution of cancer resistance. Evolutionary Applications, 2020, 13, 1733-1744.	3.1	15
43	Differences in mutational processes and intra-tumour heterogeneity between organs. Evolution, Medicine and Public Health, 2019, 2019, 139-146.	2.5	9
44	Extreme Competence: Keystone Hosts of Infections. Trends in Ecology and Evolution, 2019, 34, 303-314.	8.7	46
45	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
46	Transmissible cancer and the evolution of sex. PLoS Biology, 2019, 17, e3000275.	5.6	12
47	Multiple paternity and precocial breeding in wild Tasmanian devils, Sarcophilus harrisii (Marsupialia:) Tj ETQq1 1	0.784314 1.6	rg&T /Overlo
48	Urban environment and cancer in wildlife: available evidence and future research avenues. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182434.	2.6	37
49	Obesity paradox in cancer: Is bigger really better?. Evolutionary Applications, 2019, 12, 1092-1095.	3.1	10
50	The Ecology of Cancer. , 2019, , 153-174.		3
51	Metastasis and the evolution of dispersal. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192186.	2.6	12
52	Fifth International Biannual Evolution and Ecology of Cancer Conference (Cooperation, Conflict and) Tj ETQq0 0 12, 1863-1867.	0 rgBT /0 3.1	verlock 10 Tf 0
53	Can postfertile life stages evolve as an anticancer mechanism?. PLoS Biology, 2019, 17, e3000565.	5.6	14

54Evolved Dependence in Response to Cancer. Trends in Ecology and Evolution, 2018, 33, 269-276.8.76

#	Article	IF	CITATIONS
55	Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine and Growth Factor Reviews, 2018, 41, 18-27.	7.2	22
56	Oncogenesis as a Selective Force: Adaptive Evolution in the Face of a Transmissible Cancer. BioEssays, 2018, 40, 1700146.	2.5	18
57	Live bird markets in Bangladesh as a potentially important source for Avian Influenza Virus transmission. Preventive Veterinary Medicine, 2018, 156, 22-27.	1.9	28
58	Turning natural adaptations to oncogenic factors into an ally in the war against cancer. Evolutionary Applications, 2018, 11, 836-844.	3.1	14
59	Cancer Is Not (Only) a Senescence Problem. Trends in Cancer, 2018, 4, 169-172.	7.4	15
60	Genetic diversity, inbreeding and cancer. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172589.	2.6	39
61	MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian Devil. Scientific Reports, 2018, 8, 4175.	3.3	14
62	Active migration is associated with specific and consistent changes to gut microbiota in <i>Calidris</i> shorebirds. Journal of Animal Ecology, 2018, 87, 428-437.	2.8	73
63	How is the evolution of tumour resistance at organ-scale impacted by the importance of the organ for fitness?. BMC Evolutionary Biology, 2018, 18, 185.	3.2	1
64	Is adaptive therapy natural?. PLoS Biology, 2018, 16, e2007066.	5.6	23
65	Social environment mediates cancer progression in Drosophila. Nature Communications, 2018, 9, 3574.	12.8	44
66	Human activities might influence oncogenic processes in wild animal populations. Nature Ecology and Evolution, 2018, 2, 1065-1070.	- 0	60
		7.8	
67	Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality, Plasticity, and Predictability. American Naturalist, 2018, 192, 142-154.	2.1	47
67 68	Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality,		47 0
	Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality, Plasticity, and Predictability. American Naturalist, 2018, 192, 142-154.		
68	Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality, Plasticity, and Predictability. American Naturalist, 2018, 192, 142-154. Evolution and Cancer., 2018,,. Cancer brings forward oviposition in the fly <i>Drosophila melanogaster</i>	2.1	0
68 69	 Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality, Plasticity, and Predictability. American Naturalist, 2018, 192, 142-154. Evolution and Cancer., 2018, , . Cancer brings forward oviposition in the fly <i>Drosophila melanogaster</i>. Ecology and Evolution, 2017, 7, 272-276. Changes in diet associated with cancer: An evolutionary perspective. Evolutionary Applications, 2017, 	2.1 1.9	0 29

#	Article	IF	CITATIONS
73	Gut microbiota of a longâ€distance migrant demonstrates resistance against environmental microbe incursions. Molecular Ecology, 2017, 26, 5842-5854.	3.9	51
74	Cancer adaptations: Atavism, de novo selection, or something in between?. BioEssays, 2017, 39, 1700039.	2.5	26
75	Infections and cancer: the "fifty shades of immunity―hypothesis. BMC Cancer, 2017, 17, 257.	2.6	51
76	Cancer: A disease at the crossroads of tradeâ€offs. Evolutionary Applications, 2017, 10, 215-225.	3.1	46
77	Curvilinear telomere length dynamics in a squamate reptile. Functional Ecology, 2017, 31, 753-759.	3.6	39
78	No signs of Na ⁺ /K ⁺ â€ <scp>ATP</scp> ase adaptations to an invasive exotic toxic prey in native squamate predators. Austral Ecology, 2017, 42, 929-933.	1.5	6
79	Transmissible Cancer: The Evolution of Interindividual Metastasis. , 2017, , 167-179.		21
80	Cancer Prevalence and Etiology in Wild and Captive Animals. , 2017, , 11-46.		58
81	Toward an Ultimate Explanation of Intratumor Heterogeneity. , 2017, , 219-222.		3
82	Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. BioEssays, 2016, 38, 276-285.	2.5	19
83	Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii). Scientific Reports, 2016, 6, 25093.	3.3	18
84	Cancer and life-history traits: lessons from host–parasite interactions. Parasitology, 2016, 143, 533-541.	1.5	40
85	Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 147-154.	7.4	8
86	Evolutionary Ecology of Organs: A Missing Link in Cancer Development?. Trends in Cancer, 2016, 2, 409-415.	7.4	31
87	Transmissible cancers in an evolutionary context. BioEssays, 2016, 38, S14-23.	2.5	24
88	Transmissible cancers in an evolutionary context. Inside the Cell, 2016, 1, 17-26.	0.4	2
89	Transmissible cancers, are they more common than thought?. Evolutionary Applications, 2016, 9, 633-634.	3.1	20
90	Floods and famine: climateâ€induced collapse of a tropical predatorâ€prey community. Functional Ecology, 2016, 30, 453-458.	3.6	15

#	Article	IF	CITATIONS
91	The guardians of inherited oncogenic vulnerabilities. Evolution; International Journal of Organic Evolution, 2016, 70, 1-6.	2.3	10
92	Intrinsic versus Extrinsic Cancer Risks: The Debate Continues. Trends in Cancer, 2016, 2, 68-69.	7.4	18
93	The evolutionary ecology of transmissible cancers. Infection, Genetics and Evolution, 2016, 39, 293-303.	2.3	58
94	Cancer: an emergent property of disturbed resourceâ€rich environments? Ecology meets personalized medicine. Evolutionary Applications, 2015, 8, 527-540.	3.1	23
95	Evolutionary perspective of cancer: myth, metaphors, and reality. Evolutionary Applications, 2015, 8, 541-544.	3.1	29
96	Identification, characterisation and expression analysis of natural killer receptor genes in Chlamydia pecorum infected koalas (Phascolarctos cinereus). BMC Genomics, 2015, 16, 796.	2.8	12
97	Can Peto's paradox be used as the null hypothesis to identify the role of evolution in natural resistance to cancer? A critical review. BMC Cancer, 2015, 15, 792.	2.6	17
98	Animal behaviour and cancer. Animal Behaviour, 2015, 101, 19-26.	1.9	39
99	Bad luck and cancer: Does evolution spin the wheel of fortune?. BioEssays, 2015, 37, 586-587.	2.5	5
100	Detection of Aspergillus-specific antibodies by agar gel double immunodiffusion and IgG ELISA in feline upper respiratory tract aspergillosis. Veterinary Journal, 2015, 203, 285-289.	1.7	24
101	Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11911-11916.	7.1	130
102	Characterization of antibody V segment diversity in the Tasmanian devil (Sarcophilus harrisii). Veterinary Immunology and Immunopathology, 2015, 167, 156-165.	1.2	8
103	Population demography of frillneck lizards (<scp><i>C</i></scp> <i>hlamydosaurus kingii</i> ,) Tj ETQq1 1 0.78	4314.rgBT 1.5	Overlock 10
104	Anthropogenic selection enhances cancer evolution in T asmanian devil tumours. Evolutionary Applications, 2014, 7, 260-265.	3.1	22
105	What causes canine sino-nasal aspergillosis? A molecular approach to species identification. Veterinary Journal, 2014, 200, 17-21.	1.7	18
106	Diet fatty acid profile, membrane composition and lifespan: An experimental study using the blowfly (Calliphora stygia). Mechanisms of Ageing and Development, 2014, 138, 15-25.	4.6	8
107	Invasive toxic prey may imperil the survival of an iconic giant lizard, the Komodo dragon Pacific Conservation Biology, 2014, 20, 363.	1.0	5
108	Devil Facial Tumor Disease, A Potential Model of the Cancer Stem-Cell Process?. GSTF Journal of Veterinary Science, 2014, 1, .	0.1	0

#	Article	IF	CITATIONS
109	ISOLATION BREEDS NAIVETY: ISLAND LIVING ROBS AUSTRALIAN VARANID LIZARDS OF TOAD-TOXIN IMMUNITY VIA FOUR-BASE-PAIR MUTATION. Evolution; International Journal of Organic Evolution, 2013, 67, 289-294.	2.3	47
110	Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics, 2013, 65, 25-35.	2.4	21
111	Evolution of a contagious cancer: epigenetic variation in Devil Facial Tumour Disease. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121720.	2.6	18
112	Invader impact clarifies the roles of topâ€down and bottomâ€up effects on tropical snake populations. Functional Ecology, 2013, 27, 351-361.	3.6	43
113	Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, <i>Pseudemoia entrecasteauxii</i> . , 2013, 320, n/a-n/a.		15
114	Queensland northern quolls are not immune to cane toad toxin. Wildlife Research, 2013, 40, 228.	1.4	13
115	Devil Facial Tumor Disease, a potential model of the Cancer Stem-Cell Process?. , 2013, , .		1
116	Telomere Dynamics and Homeostasis in a Transmissible Cancer. PLoS ONE, 2012, 7, e44085.	2.5	22
117	DNA methylation in the termite Coptotermes lacteus. Insectes Sociaux, 2012, 59, 257-261.	1.2	20
118	New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease. PLoS ONE, 2012, 7, e36955.	2.5	30
119	How well do predators adjust to climate-mediated shifts in prey distribution? A study on Australian water pythons. Ecology, 2011, 92, 777-783.	3.2	19
120	Climate-induced reaction norms for life-history traits in pythons. Ecology, 2011, 92, 1858-1864.	3.2	14
121	Do natural antibodies compensate for humoral immunosenescence in tropical pythons?. Functional Ecology, 2011, 25, 813-817.	3.6	40
122	IN HOT PURSUIT: FLUCTUATING MATING SYSTEM AND SEXUAL SELECTION IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2011, 65, 574-583.	2.3	62
123	CLIMATE CHANGE, MULTIPLE PATERNITY AND OFFSPRING SURVIVAL IN LIZARDS. Evolution; International Journal of Organic Evolution, 2011, 65, 3323-3326.	2.3	20
124	Detecting the impact of invasive species on native fauna: Cane toads (<i>Bufo marinus</i>), frillneck lizards (<i>Chlamydosaurus kingii</i>) and the importance of spatial replication. Austral Ecology, 2011, 36, 126-130.	1.5	14
125	A microsatellite-based test of the Reticulitermes speratus genetic caste determination model in Coptotermes lacteus. Insectes Sociaux, 2011, 58, 365-370.	1.2	0
126	Major Histocompatibility Complex (MHC) Markers in Conservation Biology. International Journal of Molecular Sciences, 2011, 12, 5168-5186.	4.1	99

#	Article	IF	CITATIONS
127	Climate-driven impacts of prey abundance on the population structure of a tropical aquatic predator. Oikos, 2010, 119, 188-196.	2.7	16
128	Short Telomeres in Hatchling Snakes: Erythrocyte Telomere Dynamics and Longevity in Tropical Pythons. PLoS ONE, 2009, 4, e7493.	2.5	56
129	Experimental studies of blowfly (Calliphora stygia) longevity: A little dietary fat is beneficial but too much is detrimental. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 154, 383-388.	1.8	36
130	Molecular and Morphological Description of a Hepatozoon Species in Reptiles and Their Ticks in the Northern Territory, Australia. Journal of Parasitology, 2009, 95, 434-442.	0.7	46
131	Population genetic structure, gene flow and sexâ€biased dispersal in frillneck lizards (<i>Chlamydosaurus kingii</i>). Molecular Ecology, 2008, 17, 3557-3564.	3.9	41
132	Complete mitochondrial genome of the frillneck lizard (Chlamydosaurus kingii, Reptilia; Agamidae), another squamate with two control regions. DNA Sequence, 2008, 19, 465-470.	0.7	0
133	Mitochondrial DNA recombination in a free-ranging Australian lizard. Biology Letters, 2007, 3, 189-192.	2.3	62
134	Do "infectious―prey select for high levels of natural antibodies in tropical pythons?. Evolutionary Ecology, 2007, 21, 271-279.	1.2	25
135	MHC class I variation associates with parasite resistance and longevity in tropical pythons. Journal of Evolutionary Biology, 2006, 19, 1973-1978.	1.7	71
136	Size matters: extraordinary rodent abundance on an Australian tropical flood plain. Austral Ecology, 2006, 31, 361-365.	1.5	11
137	Rain, rats and pythons: Climate-driven population dynamics of predators and prey in tropical Australia. Austral Ecology, 2006, 31, 30-37.	1.5	89
138	Age, parasites, and condition affect humoral immune response in tropical pythons. Behavioral Ecology, 2006, 17, 20-24.	2.2	70
139	DOES MATE GUARDING PREVENT RIVAL MATING IN SNOW SKINKS? A TEST USING AFLP. Herpetologica, 2005, 61, 389-394.	0.4	9
140	Paternal alleles enhance female reproductive success in tropical pythons. Molecular Ecology, 2005, 14, 1783-1787.	3.9	27
141	THE ROLE OF HALDANE'S RULE IN SEX ALLOCATION. Evolution; International Journal of Organic Evolution, 2005, 59, 221-225.	2.3	21
142	MHC, health, color, and reproductive success in sand lizards. Behavioral Ecology and Sociobiology, 2005, 58, 289-294.	1.4	37
143	Old pythons stay fit; effects of haematozoan infections on life history traits of a large tropical predator. Oecologia, 2005, 142, 407-412.	2.0	57
144	THE ROLE OF HALDANE'S RULE IN SEX ALLOCATION. Evolution; International Journal of Organic Evolution, 2005, 59, 221.	2.3	2

BEATA UJVARI

#	Article	IF	CITATIONS
145	Discrepancy in mitochondrial and nuclear polymorphism in meadow vipers (Vipera ursinii) questions the unambiguous use of mtDNA in conservation studies. Amphibia - Reptilia, 2005, 26, 287-292.	0.5	12
146	Severe malformation in neonate Vipera ursinii rakosiensis. Amphibia - Reptilia, 2005, 26, 388-390.	0.5	2
147	Costly parasite resistance: a genotype-dependent handicap in sand lizards?. Biology Letters, 2005, 1, 375-377.	2.3	13
148	FECUNDITY AND MHC AFFECTS EJACULATION TACTICS AND PATERNITY BIAS IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2004, 58, 906.	2.3	3
149	Offspring-driven local dispersal in female sand lizards (Lacerta agilis). Journal of Evolutionary Biology, 2004, 17, 1215-1220.	1.7	12
150	Haldane rules: costs of outbreeding at production of daughters in sand lizards. Ecology Letters, 2004, 7, 924-928.	6.4	17
151	FECUNDITY AND MHC AFFECTS EJACULATION TACTICS AND PATERNITY BIAS IN SAND LIZARDS. Evolution; International Journal of Organic Evolution, 2004, 58, 906-909.	2.3	42
152	High Prevalence of Hepatozoon Spp. (Apicomplexa, Hepatozoidae) Infection in Water Pythons (Liasis) Tj ETQq0 (0 0 rgBT /C	verlock 10 T

153	Novel genes continue to enhance population growth in adders (Vipera berus). Biological Conservation, 2004, 120, 145-147.	4.1	83
154	Major histocompatibility complex and mate choice in sand lizards. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S254-6.	2.6	219
155	SEXUAL DIMORPHISM IN LIZARD BODY SHAPE: THE ROLES OF SEXUAL SELECTION AND FECUNDITY SELECTION. Evolution; International Journal of Organic Evolution, 2002, 56, 1538.	2.3	13

Low genetic diversity threatens imminent extinction for the Hungarian meadow viper (Vipera ursinii) Tj ETQq0 0 0 rg BT /Overlock 10 Tf $\frac{5}{56}$

157	SEXUAL DIMORPHISM IN LIZARD BODY SHAPE: THE ROLES OF SEXUAL SELECTION AND FECUNDITY SELECTION. Evolution; International Journal of Organic Evolution, 2002, 56, 1538-1542.	2.3	182

Life history, population characteristics and conservation of the Hungarian meadow viper (Vipera) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 2 $\frac{158}{16}$