Peng-Fei Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325769/publications.pdf

Version: 2024-02-01

159585 189892 2,775 67 30 50 citations g-index h-index papers 69 69 69 3212 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Singleâ€Ion Conducting Polymer Electrolytes for Solidâ€5tate Lithium–Metal Batteries: Design, Performance, and Challenges. Advanced Energy Materials, 2021, 11, 2003836.	19.5	206
2	Big Effect of Small Nanoparticles: A Shift in Paradigm for Polymer Nanocomposites. ACS Nano, 2017, 11, 752-759.	14.6	177
3	Superstretchable, Selfâ€Healing Polymeric Elastomers with Tunable Properties. Advanced Functional Materials, 2018, 28, 1800741.	14.9	162
4	Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing. Advanced Functional Materials, 2018, 28, 1800631.	14.9	128
5	3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. Advanced Functional Materials, 2019, 29, 1900469.	14.9	122
6	Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020, 40, 140-159.	14.2	115
7	Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. ACS Energy Letters, 2019, 4, 1171-1180.	17.4	108
8	Elastic vitrimers: Beyond thermoplastic and thermoset elastomers. Matter, 2022, 5, 1391-1422.	10.0	90
9	Smart cements and cement additives for oil and gas operations. Journal of Petroleum Science and Engineering, 2015, 129, 63-76.	4.2	84
10	Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids. Journal of Physical Chemistry B, 2017, 121, 11511-11519.	2.6	82
11	Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3470-3478.	8.0	77
12	Autonomous Selfâ€Healing Elastomers with Unprecedented Adhesion Force. Advanced Functional Materials, 2021, 31, 2006298.	14.9	64
13	Stimuli-Responsive Polymers and their Potential Applications in Oil-Gas Industry. Polymer Reviews, 2015, 55, 706-733.	10.9	60
14	Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy, 2020, 73, 104804.	16.0	57
15	Core-shell type multiarm star poly ($\hat{l}\mu$ -caprolactone) with high molecular weight hyperbranched polyethylenimine as core: Synthesis, characterization and encapsulation properties. European Polymer Journal, 2008, 44, 1060-1070.	5.4	56
16	Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. Bioconjugate Chemistry, 2016, 27, 1227-1235.	3.6	53
17	4D Printing via an Unconventional Fused Deposition Modeling Route to High-Performance Thermosets. ACS Applied Materials & Deposition Modeling Route to High-Performance Thermosets.	8.0	52
18	Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	2.3	52

#	Article	IF	CITATIONS
19	A star-shaped single lithium-ion conducting copolymer by grafting a POSS nanoparticle. Polymer, 2017, 124, 117-127.	3.8	45
20	Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers. , 2021, 3, 1095-1103.		44
21	Hydrogen-bond strength changes network dynamics in associating telechelic PDMS. Soft Matter, 2018, 14, 1235-1246.	2.7	43
22	The Role of Chain-End Association Lifetime in Segmental and Chain Dynamics of Telechelic Polymers. Macromolecules, 2018, 51, 8561-8573.	4.8	42
23	Polymer Binders Constructed through Dynamic Noncovalent Bonds for Highâ€Capacity Siliconâ€Based Anodes. Chemistry - A European Journal, 2019, 25, 10976-10994.	3.3	42
24	Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers. Macromolecules, 2020, 53, 3591-3601.	4.8	41
25	Viscoelasticity in associating oligomers and polymers: experimental test of the bond lifetime renormalization model. Soft Matter, 2020, 16, 390-401.	2.7	40
26	Surpassing the stiffness-extensibility trade-off of elastomers via mastering the hydrogen-bonding clusters. Matter, 2022, 5, 237-252.	10.0	40
27	Modulating the guest encapsulation and release properties of multiâ€arm star polyethylenimineâ€∢i>blockà€poly(εâ€caprolactone). Journal of Polymer Science Part A, 2009, 47, 5184-519	3 ^{2.3}	37
28	Adhesive Polymers as Efficient Binders for High-Capacity Silicon Electrodes. ACS Applied Energy Materials, 2020, 3, 3387-3396.	5.1	34
29	Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26483-26491.	8.0	32
30	Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene–Metal Nanoparticle Hybrids by Ketyl Radicals. ACS Applied Materials & Therfaces, 2017, 9, 24887-24898.	8.0	32
31	A Trefoil Knotted Polymer Produced through Ring Expansion. Angewandte Chemie - International Edition, 2015, 54, 5127-5131.	13.8	31
32	Improved Single-Ion Conductivity of Polymer Electrolyte via Accelerated Segmental Dynamics. ACS Applied Energy Materials, 2020, 3, 12540-12548.	5.1	31
33	Grafted Carbazole-Assisted Electrodeposition of Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10266-10274.	8.0	30
34	What dielectric spectroscopy can tell us about supramolecular networksat. European Physical Journal E, 2019, 42, 133.	1.6	30
35	From natural material to high-performance silicon based anode: Towards cost-efficient silicon based electrodes in high-performance Li-ion batteries. Electrochimica Acta, 2019, 327, 135058.	5.2	28
36	Catenated Poly(ε-caprolactone) and Poly(<scp> </scp> -lactide) via Ring-Expansion Strategy. Macromolecules, 2015, 48, 3825-3833.	4.8	25

#	Article	IF	Citations
37	Unravelling the Mechanism of Viscoelasticity in Polymers with Phase-Separated Dynamic Bonds. ACS Nano, 2022, 16, 4746-4755.	14.6	23
38	Self-Healable, Highly Stretchable, Ionic Conducting Polymers as Efficient Protecting Layers for Stable Lithium-Metal Electrodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26014-26023.	8.0	23
39	Critical Role of the Interfacial Layer in Associating Polymers with Microphase Separation. Macromolecules, 2021, 54, 4246-4256.	4.8	22
40	A supramolecularly templated catenane initiator and a controlled ring expansion strategy. Chemical Communications, 2012, 48, 12094.	4.1	20
41	Tailored CO ₂ -philic Gas Separation Membranes via One-Pot Thiol–ene Chemistry. Macromolecules, 2019, 52, 5819-5828.	4.8	20
42	Photoswitchable Nanocarrier with Reversible Encapsulation Properties. ACS Macro Letters, 2015, 4, 58-62.	4.8	19
43	A Supramolecular Polyethylenimine-Cored Carbazole Dendritic Polymer with Dual Applications. Macromolecules, 2015, 48, 6801-6809.	4.8	19
44	Rational Polymer Design of Stretchable Poly(ionic liquid) Membranes for Dual Applications. Macromolecules, 2021, 54, 896-905.	4.8	19
45	Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51525-51534.	8.0	18
46	Covalently stabilized vesicles derived from amphiphilic multiarm star polymers: Preparation, characterization, and their capability of hosting different polarity of guests. Journal of Polymer Science Part A, 2012, 50, 227-236.	2.3	17
47	Are Porous Polymers Practical to Protect Liâ€Metal Anodes? ―Current Strategies and Future Opportunities. Advanced Functional Materials, 2022, 32, .	14.9	17
48	Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy. Macromolecules, 2017, 50, 1473-1481.	4.8	15
49	Highly Stretchable, Ultratough, and Multifunctional Poly(vinyl chloride)-Based Plastics <i>via</i> Green, Star-Shaped Macromolecular Additive. Macromolecules, 2021, 54, 3169-3180.	4.8	15
50	Glass-fiber-reinforced polymeric film as an efficient protecting layer for stable Li metal electrodes. Cell Reports Physical Science, 2021, 2, 100534.	5.6	15
51	Star-like copolymer stabilized noble-metal nanoparticle powders. Nanoscale, 2016, 8, 7435-7442.	5.6	14
52	Turning Rubber into a Glass: Mechanical Reinforcement by Microphase Separation. ACS Macro Letters, 2021, 10, 197-202.	4.8	12
53	Facile Fabrication of Porous Si Microspheres from Lowâ€Cost Precursors for Highâ€Capacity Electrode. Advanced Materials Interfaces, 2020, 7, 1901726.	3.7	11
54	An <i>in situ</i> generated polymer electrolyte <i>via</i> anionic ring-opening polymerization for lithiumâ€"sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 25927-25933.	10.3	11

#	Article	IF	CITATIONS
55	Plasmonic Retrofitting of Membrane Materials: Shifting from Selfâ€Regulation to Onâ€Command Control of Fluid Flow. Advanced Materials, 2018, 30, 1707598.	21.0	10
56	On the Formation and Electropolymerization of a Star Copolymer With Peripheral Carbazoles. Macromolecular Chemistry and Physics, 2013, 214, 386-395.	2.2	8
57	Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry. Polymer International, 2017, 66, 1252-1258.	3.1	8
58	Demonstration of self-healing barrier films for vacuum insulation panels. Vacuum, 2019, 164, 132-139.	3.5	8
59	Highly Permeable Oligo(ethylene oxide)―co â€poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation. Advanced Sustainable Systems, 2018, 2, 1700113.	5.3	6
60	Coreâ€"Shell Gold Nanoparticle-Star Copolymer Composites with Gradient Transfer and Transport Properties: Toward Electro-Optical Sensors and Catalysis. ACS Applied Nano Materials, 2021, 4, 1394-1400.	5.0	6
61	Polymer Nanosheet Containing Star‣ike Copolymers: A Novel Scalable Controlled Release System. Small, 2018, 14, e1800115.	10.0	5
62	Continuous Flow Fabrication of Block Copolymer–Grafted Silica Microâ€Particles in Environmentally Friendly Water/Ethanol Media. Macromolecular Materials and Engineering, 2019, 304, 1800451.	3.6	5
63	Living Radical Polymerization from Colloidally-Templated Nanopatterned Surface. ACS Symposium Series, 2015, , 169-185.	0.5	1
64	Selective Plasticization of Poly (ethylene oxide) (PEO) Block in Nanostructured Polystyreneâ [^] PEOâ [^] Polystyrene Triblock Copolymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 050506.	2.9	1
65	Frontispiece: Polymer Binders Constructed through Dynamic Noncovalent Bonds for Highâ€Capacity Siliconâ€Based Anodes. Chemistry - A European Journal, 2019, 25, .	3.3	0
66	Elastic Single-Ion Conducting Polymer Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0
67	The Impact of Selectively Plasticized Poly (ethylene oxide) (PEO) Block in Nanostructured Polystyrenea^'PEOa^'Polystyrene Triblock Copolymer Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	O