Daniel Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325251/publications.pdf

Version: 2024-02-01

257450 361022 3,724 35 24 35 citations h-index g-index papers 39 39 39 3849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polycomb proteins control floral determinacy by H3K27me3-mediated repression of pluripotency genes in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2022, 73, 2385-2402.	4.8	7
2	BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. Plant Cell, 2022, 34, 2242-2265.	6.6	11
3	Tidying-up the plant nuclear space: domains, functions, and dynamics. Journal of Experimental Botany, 2020, 71, 5160-5178.	4.8	20
4	Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature. Frontiers in Plant Science, 2020, 11, 39.	3.6	26
5	Measurement of Arabidopsis thaliana Nuclear Size and Shape. Methods in Molecular Biology, 2020, 2093, 107-113.	0.9	3
6	Alternative splicing coupled mRNA decay shapes the temperatureâ€dependent transcriptome. EMBO Reports, 2020, 21, e51369.	4.5	28
7	Chromatinâ€based mechanisms of temperature memory in plants. Plant, Cell and Environment, 2019, 42, 762-770.	5 . 7	125
8	The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to Regulate Nuclear Size. Plant Cell, 2019, 31, 1141-1154.	6.6	56
9	BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008563.	3.5	15
10	Evolution of Polycomb-group function in the green lineage. F1000Research, 2019, 8, 268.	1.6	20
11	PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 Interacts with Polycomb-Group Proteins and Histones and Regulates Arabidopsis Flowering and Development. Plant Cell, 2018, 30, 117-133.	6.6	48
12	Epigenetic Regulation of Phase Transitions in Arabidopsis thaliana. RNA Technologies, 2017, , 359-383.	0.3	11
13	Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Frontiers in Plant Science, 2017, 8, 607.	3.6	38
14	BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1530.	3.6	30
15	One, Two, Three: Polycomb Proteins Hit All Dimensions of Gene Regulation. Genes, 2015, 6, 520-542.	2.4	31
16	Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana. Plant Signaling and Behavior, 2015, 10, e1010868.	2.4	8
17	Polycomb and Trithorax group protein-mediated control of stress responses in plants. Biological Chemistry, 2014, 395, 1291-1300.	2.5	43
18	Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana Â. Plant Cell, 2014, 26, 2457-2471.	6.6	46

#	Article	IF	CITATIONS
19	Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1003062.	3.5	141
20	Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation. PLoS Genetics, 2011, 7, e1002040.	3.5	327
21	Involvement of a Jumonji domainâ€containing histone demethylase in DRM2â€mediated maintenance of DNA methylation. EMBO Reports, 2010, 11, 950-955.	4.5	78
22	The CURLY LEAF Interacting Protein BLISTER Controls Expression of Polycomb-Group Target Genes and Cellular Differentiation of <i>Arabidopsis thaliana < li > li A. Plant Cell, 2010, 22, 2291-2305.</i>	6.6	53
23	Balance of power – dynamic regulation of chromatin in plant development. Biological Chemistry, 2009, 390, 1113-1123.	2.5	9
24	Keeping plants in shape: Polycomb-group genes and histone methylation. Seminars in Cell and Developmental Biology, 2008, 19, 547-553.	5.0	76
25	Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO Journal, 2006, 25, 4638-4649.	7.8	396
26	Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Reports, 2006, 7, 947-952.	4.5	242
27	Epigenetic control of plant development by Polycomb-group proteins. Current Opinion in Plant Biology, 2005, 8, 553-561.	7.1	123
28	Interaction of Polycomb-group proteins controlling flowering in <i>Arabidopsis </i> . Development (Cambridge), 2004, 131, 5263-5276.	2.5	491
29	Silencing in Arabidopsis T-DNA Transformants: The Predominant Role of a Gene-Specific RNA Sensing Mechanism versus Position Effects. Plant Cell, 2004, 16, 2561-2572.	6.6	251
30	Essential role of the V-ATPase in male gametophyte development. Plant Journal, 2004, 41, 117-124.	5.7	106
31	Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO Journal, 2004, 23, 4146-4155.	7.8	359
32	A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology, 2003, 52, 161-176.	3.9	160
33	Plant epigenetics: MEDEA's children take centre stage. Current Biology, 2003, 13, R638-R640.	3.9	6
34	Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant Journal, 2003, 34, 507-517.	5.7	118
35	MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology, 2002, 4, 711-714.	10.3	220