
Daniel Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of Polycomb-group proteins controlling flowering in <i>Arabidopsis</i> . Development (Cambridge), 2004, 131, 5263-5276.	2.5	491
2	Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO Journal, 2006, 25, 4638-4649.	7.8	396
3	Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO Journal, 2004, 23, 4146-4155.	7.8	359
4	Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation. PLoS Genetics, 2011, 7, e1002040.	3.5	327
5	Silencing in Arabidopsis T-DNA Transformants: The Predominant Role of a Gene-Specific RNA Sensing Mechanism versus Position Effects. Plant Cell, 2004, 16, 2561-2572.	6.6	251
6	Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Reports, 2006, 7, 947-952.	4.5	242
7	MOR1/CEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology, 2002, 4, 711-714.	10.3	220
8	A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology, 2003, 52, 161-176.	3.9	160
9	Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1003062.	3.5	141
10	Chromatinâ€based mechanisms of temperature memory in plants. Plant, Cell and Environment, 2019, 42, 762-770.	5.7	125
11	Epigenetic control of plant development by Polycomb-group proteins. Current Opinion in Plant Biology, 2005, 8, 553-561.	7.1	123
12	Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant Journal, 2003, 34, 507-517.	5.7	118
13	Essential role of the V-ATPase in male gametophyte development. Plant Journal, 2004, 41, 117-124.	5.7	106
14	Involvement of a Jumonjiâ€C domainâ€containing histone demethylase in DRM2â€mediated maintenance of DNA methylation. EMBO Reports, 2010, 11, 950-955.	4.5	78
15	Keeping plants in shape: Polycomb-group genes and histone methylation. Seminars in Cell and Developmental Biology, 2008, 19, 547-553.	5.0	76
16	The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to Regulate Nuclear Size. Plant Cell, 2019, 31, 1141-1154.	6.6	56
17	The CURLY LEAF Interacting Protein BLISTER Controls Expression of Polycomb-Group Target Genes and Cellular Differentiation of <i>Arabidopsis thaliana </i> A Â. Plant Cell, 2010, 22, 2291-2305.	6.6	53
18	PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 Interacts with Polycomb-Group Proteins and Histones and Regulates Arabidopsis Flowering and Development. Plant Cell, 2018, 30, 117-133.	6.6	48

DANIEL SCHUBERT

#	Article	IF	CITATIONS
19	Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana Â. Plant Cell, 2014, 26, 2457-2471.	6.6	46
20	Polycomb and Trithorax group protein-mediated control of stress responses in plants. Biological Chemistry, 2014, 395, 1291-1300.	2.5	43
21	Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Frontiers in Plant Science, 2017, 8, 607.	3.6	38
22	One, Two, Three: Polycomb Proteins Hit All Dimensions of Gene Regulation. Genes, 2015, 6, 520-542.	2.4	31
23	BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1530.	3.6	30
24	Alternative splicing coupled mRNA decay shapes the temperatureâ€dependent transcriptome. EMBO Reports, 2020, 21, e51369.	4.5	28
25	Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature. Frontiers in Plant Science, 2020, 11, 39.	3.6	26
26	Tidying-up the plant nuclear space: domains, functions, and dynamics. Journal of Experimental Botany, 2020, 71, 5160-5178.	4.8	20
27	Evolution of Polycomb-group function in the green lineage. F1000Research, 2019, 8, 268.	1.6	20
28	BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008563.	3.5	15
29	Epigenetic Regulation of Phase Transitions in Arabidopsis thaliana. RNA Technologies, 2017, , 359-383.	0.3	11
30	BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. Plant Cell, 2022, 34, 2242-2265.	6.6	11
31	Balance of power $\hat{a} \in$ dynamic regulation of chromatin in plant development. Biological Chemistry, 2009, 390, 1113-1123.	2.5	9
32	Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana. Plant Signaling and Behavior, 2015, 10, e1010868.	2.4	8
33	Polycomb proteins control floral determinacy by H3K27me3-mediated repression of pluripotency genes in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2022, 73, 2385-2402.	4.8	7
34	Plant epigenetics: MEDEA's children take centre stage. Current Biology, 2003, 13, R638-R640.	3.9	6
35	Measurement of Arabidopsis thaliana Nuclear Size and Shape. Methods in Molecular Biology, 2020, 2093, 107-113.	0.9	3