Denis Baurain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8324548/publications.pdf

Version: 2024-02-01

136950 106344 5,346 65 32 citations h-index papers

65 g-index 81 81 81 7877 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lower Statistical Support with Larger Data Sets: Insights from the Ochrophyta Radiation. Molecular Biology and Evolution, 2022, 39, .	8.9	7
2	A Fast-Growing Oleaginous Strain of Coelastrella Capable of Astaxanthin and Canthaxanthin Accumulation in Phototrophy and Heterotrophy. Life, 2022, 12, 334.	2.4	7
3	Contamination detection in genomic data: more is not enough. Genome Biology, 2022, 23, 60.	8.8	37
4	Was the Last Bacterial Common Ancestor a Monoderm after All?. Genes, 2022, 13, 376.	2.4	6
5	An Extended Reservoir of Class-D Beta-Lactamases in Non-Clinical Bacterial Strains. Microbiology Spectrum, 2022, 10, e0031522.	3.0	4
6	Phylogenomic Analyses of <i>Snodgrassella</i> Isolates from Honeybees and Bumblebees Reveal Taxonomic and Functional Diversity. MSystems, 2022, 7, .	3.8	19
7	Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages. BMC Research Notes, 2021, 14, 143.	1.4	5
8	De Novo Transcriptome Meta-Assembly of the Mixotrophic Freshwater Microalga Euglena gracilis. Genes, 2021, 12, 842.	2.4	9
9	ToRQuEMaDA: tool for retrieving queried Eubacteria, metadata and dereplicating assemblies. PeerJ, 2021, 9, e11348.	2.0	5
10	Decontamination, pooling and dereplication of the 678 samples of the Marine Microbial Eukaryote Transcriptome Sequencing Project. BMC Research Notes, 2021, 14, 306.	1.4	13
11	Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A case study with Cyanobacteria and cyanolichens. Molecular Phylogenetics and Evolution, 2021, 162, 107100.	2.7	8
12	Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in $\langle i \rangle$ Euglena gracilis $\langle i \rangle$. New Phytologist, 2021, 232, 1603-1617.	7.3	11
13	Contamination in Reference Sequence Databases: Time for Divide-and-Rule Tactics. Frontiers in Microbiology, 2021, 12, 755101.	3.5	25
14	ORPER: A Workflow for Constrained SSU rRNA Phylogenies. Genes, 2021, 12, 1741.	2.4	2
15	The taxonomy of the Trichophyton rubrum complex: a phylogenomic approach. Microbial Genomics, 2021, 7, .	2.0	11
16	Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 2020, 11, 5601.	12.8	47
17	Palantir: a springboard for the analysis of secondary metabolite gene clusters in large-scale genome mining projects. Bioinformatics, 2020, 36, 4345-4347.	4.1	16
18	Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnology Advances, 2019, 37, 107449.	11.7	24

#	Article	IF	CITATIONS
19	Cyanobacteria evolution: Insight from the fossil record. Free Radical Biology and Medicine, 2019, 140, 206-223.	2.9	116
20	Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evolutionary Biology, 2019, 19, 21.	3.2	96
21	A constrained SSU-rRNA phylogeny reveals the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Research Notes, 2018, 11, 435.	1.4	9
22	Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS ONE, 2018, 13, e0200323.	2.5	41
23	High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits. Antibiotics, 2018, 7, 27.	3.7	22
24	Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk Deposits. Antibiotics, 2018, 7, 28.	3.7	68
25	Complete Genome Sequence of Streptomyces lunaelactis MM109 T , Isolated from Cave Moonmilk Deposits. Genome Announcements, 2018, 6, .	0.8	8
26	Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microbial Genomics, 2018, 4, .	2.0	23
27	Draft Genome Sequence of the Axenic Strain <i>Phormidesmis priestleyi</i> ULC007, a Cyanobacterium Isolated from Lake Bruehwiler (Larsemann Hills, Antarctica). Genome Announcements, 2017, 5, .	0.8	12
28	High-throughput sequencing analysis reveals the genetic diversity of different regions of the murine norovirus genome during in vitro replication. Archives of Virology, 2017, 162, 1019-1023.	2.1	8
29	Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who's Leading HCHT's Biological Function. Scientific Reports, 2017, 7, 2768.	3.3	14
30	A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 2017, 27, 958-967.	3.9	423
31	Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Molecular Phylogenetics and Evolution, 2017, 115, 16-26.	2.7	44
32	Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology and Evolution, 2017, 1, 1370-1378.	7.8	247
33	Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors. Nucleic Acids Research, 2017, 45, 9547-9557.	14.5	29
34	Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation. Frontiers in Microbiology, 2017, 8, 1181.	3.5	63
35	Pitfalls in supermatrix phylogenomics. European Journal of Taxonomy, 2017, , .	0.6	50
36	A Phenotypic and Genotypic Analysis of the Antimicrobial Potential of Cultivable Streptomyces Isolated from Cave Moonmilk Deposits. Frontiers in Microbiology, 2016, 7, 1455.	3.5	64

#	Article	IF	Citations
37	On the use of highâ€throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. Journal of Phycology, 2016, 52, 356-368.	2.3	36
38	Coding and noncoding variants in <i>HFM1</i> , <i>MLH3</i> , <i>MSH4</i> , <i>MSH5</i> , <i>RNF212</i> , and <i>RNF212B</i> affect recombination rate in cattle. Genome Research, 2016, 26, 1323-1332.	5.5	77
39	Gram-Negative Bacteria- Inner vs. Cytoplasmic or Plasma Membrane- A Question of Clarity rather than Vocabulary. Journal of Microbial & Biochemical Technology, 2016, 8, .	0.2	3
40	Rooting the tree of life: the phylogenetic jury is still out. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140329.	4.0	77
41	Chromera velia, Endosymbioses and the Rhodoplex Hypothesis—Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH Lineages). Genome Biology and Evolution, 2014, 6, 666-684.	2.5	93
42	The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion, 2014, 19, 338-349.	3.4	59
43	Impact of Missing Data on Phylogenies Inferred from Empirical Phylogenomic Data Sets. Molecular Biology and Evolution, 2013, 30, 197-214.	8.9	275
44	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	27.8	612
45	Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Frontiers in Plant Science, 2013, 4, 544.	3.6	39
46	The unusual Gasteromycetes Lycogalopsis solmsii belongs to the gomphoid-phalloid group. Acta Mycologica, 2013, 48, 13-20.	0.3	2
47	A Single Ancient Origin for Prototypical Serine/Arginine-Rich Splicing Factors Â. Plant Physiology, 2012, 158, 546-560.	4.8	28
48	Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nature Genetics, 2011, 43, 405-413.	21.4	300
49	Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough. PLoS Biology, 2011, 9, e1000602.	5.6	932
50	Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles. Molecular Biology and Evolution, 2010, 27, 1698-1709.	8.9	248
51	Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Research, 2010, 20, 1651-1662.	5.5	38
52	Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Research, 2010, 38, D640-D651.	14.5	126
53	Atypical Subunit Composition of the Chlorophycean Mitochondrial F1FO-ATP Synthase and Role of Asa7 Protein in Stability and Oligomycin Resistance of the Enzyme. Molecular Biology and Evolution, 2010, 27, 1630-1644.	8.9	47
54	Lack of Resolution in the Animal Phylogeny: Closely Spaced Cladogeneses or Undetected Systematic Errors?. Molecular Biology and Evolution, 2007, 24, 6-9.	8.9	150

#	Article	IF	CITATIONS
55	Origin and Distribution of Calvin Cycle Fructose and Sedoheptulose Bisphosphatases in Plantae and Complex Algae: A Single Secondary Origin of Complex Red Plastids and Subsequent Propagation via Tertiary Endosymbioses. Protist, 2007, 158, 263-276.	1.5	55
56	A Comparative Inventory of Metal Transporters in the Green Alga Chlamydomonas reinhardtii and the Red Alga Cyanidioschizon merolae. Plant Physiology, 2005, 137, 428-446.	4.8	157
57	The Mitochondrial Oxidative Phosphorylation Proteome of Chlamydomonas reinhardtii Deduced from the Genome Sequencing Project: Table I Plant Physiology, 2005, 137, 447-459.	4.8	78
58	Regulation of the Alternative Oxidase Aox1 Gene inChlamydomonas reinhardtii. Role of the Nitrogen Source on the Expression of a Reporter Gene under the Control of theAox1 Promoter. Plant Physiology, 2003, 131, 1418-1430.	4.8	50
59	REMARKABLE CONSERVATION OF INTERNALLY TRANSCRIBED SPACER SEQUENCES OFARTHROSPIRA("SPIRULINAâ€â€ƒ) (CYANOPHYCEAE, CYANOBACTERIA) STRAINS FROM FOUR CONTINENTS OF RECENT AND 30â€YEARâ€OLD DRIED SAMPLES FROM AFRICA1. Journal of Phycology, 2002, 38, 384-393.	AND	44
60	Characterization of two genes encoding the mitochondrial alternative oxidase in Chlamydomonas reinhardtii. Current Genetics, 2001, 39, 101-108.	1.7	60
61	A mutation in the GTPase domain of the large subunit rRNA is involved in the suppression of a –1T frameshift mutation affecting a mitochondrial gene in Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 2001, 266, 103-108.	2.1	4
62	Mutants of <i>Chlamydomonas reinhardtii</i> Deficient in Mitochondrial Complex I: Characterization of Two Mutations Affecting the <i>nd1</i> Coding Sequence. Genetics, 2001, 158, 1051-1060.	2.9	47
63	Arthrospira(â€Â~Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiology Letters, 1999, 172, 213-222.	1.8	79
64	Arthrospira ('Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiology Letters, 1999, 172, 213-222.	1.8	3
65	Phylogenomics: how far back in the past can we go?., 0,, 149-177.		0