
Yildirim Dilek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8324218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 2013, 23, 1429-1454.	6.0	1,045
2	Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin of the Geological Society of America, 2011, 123, 387-411.	3.3	898
3	Ophiolites and Their Origins. Elements, 2014, 10, 93-100.	0.5	503
4	Lhasa terrane in southern Tibet came from Australia. Geology, 2011, 39, 727-730.	4.4	430
5	Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 2009, 113, 190-212.	1.4	388
6	Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 2009, 113, 1-20.	1.4	345
7	Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 2008, 100, 174-209.	1.4	310
8	Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 2012, 328, 290-308.	3.3	288
9	Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 2007, 11, 453-475.	6.0	283
10	Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Bulletin of the Geological Society of America, 1999, 111, 1192-1216.	3.3	262
11	Mélanges and mélange-forming processes: a historical overview and new concepts. International Geology Review, 2010, 52, 1040-1105.	2.1	262
12	Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 2010, 52, 536-578.	2.1	231
13	Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 2009, 113, 68-87.	1.4	229
14	Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia. International Geology Review, 2007, 49, 431-453.	2.1	174
15	Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers, 2014, 5, 571-603.	8.4	161
16	Diamonds in Ophiolites. Elements, 2014, 10, 127-130.	0.5	158
17	Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos, 2012, 132-133, 50-69.	1.4	157
18	Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 2015, 27, 459-485.	6.0	151

#	Article	IF	CITATIONS
19	Precambrian greenstone sequences represent different ophiolite types. Gondwana Research, 2015, 27, 649-685.	6.0	148
20	Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society Special Publication, 2009, 311, 213-233.	1.3	144
21	Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges. Tectonophysics, 2012, 568-569, 7-24.	2.2	141
22	Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 2015, 105, 320-337.	2.3	141
23	Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Bulletin of the Geological Society of America, 2017, 129, 1379-1407.	3.3	141
24	Age and petrogenesis of plagiogranite intrusions in the Ankara melange, central Turkey. Island Arc, 2006, 15, 44-57.	1.1	137
25	Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society Special Publication, 2003, 218, 43-68.	1.3	135
26	Suprasubduction zone ophiolites and Archean tectonics. Geology, 2008, 36, 431.	4.4	134
27	Origin and significance of olistostromes in the evolution of orogenic belts: A global synthesis. Gondwana Research, 2016, 39, 180-203.	6.0	127
28	What constitutes â€~emplacement' of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geological Society Special Publication, 2003, 218, 427-447.	1.3	125
29	Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Research, 2019, 74, 7-30.	6.0	106
30	Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites. International Geology Review, 2005, 47, 147-176.	2.1	105
31	Crustal structure of the Indus–Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Research, 2015, 27, 507-524.	6.0	102
32	lsua supracrustal belt (Greenland)—A vestige of a 3.8ÂGa suprasubduction zone ophiolite, and the implications for Archean geology. Lithos, 2009, 113, 115-132.	1.4	101
33	Geochemistry of anorthositic differentiated sills in the Archean (~2970Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos, 2011, 123, 50-72.	1.4	101
34	Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 2012, 21, 961-986.	6.0	101
35	The geodynamics of the Aegean and Anatolia: introduction. Geological Society Special Publication, 2007, 291, 1-16.	1.3	100
36	Field and geochemical characteristics of the Mesoarchean (â^¼3075Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Research, 2007, 11, 69-91.	6.0	99

#	Article	IF	CITATIONS
37	Structure and geochemistry of an Alaskan-type ultramafic–mafic complex in the Eastern Pontides, NE Turkey. Gondwana Research, 2010, 18, 230-252.	6.0	92
38	The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075ÂMa Ivisaartoq greenstone belt, SW Greenland. Lithos, 2008, 100, 293-321.	1.4	91
39	Insight into the uppermost mantle section of a maturing arc: The Eastern Mirdita ophiolite, Albania. Lithos, 2011, 124, 215-226.	1.4	90
40	Geochemistry and tectonic evolution of the Neoproterozoic Wadi Ghadir ophiolite, Eastern Desert, Egypt. Lithos, 2009, 113, 158-178.	1.4	89
41	Eocene Granitic Magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U–Pb and 40Ar–39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos, 2012, 155, 289-309.	1.4	88
42	Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. Geological Society Special Publication, 2009, 327, 127-160.	1.3	85
43	Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran. International Geology Review, 2010, 52, 608-630.	2.1	85
44	The Troodos (Cyprus) and Kizildag (S. Turkey) Ophiolites as Structural Models for Slow-Spreading Ridge Segments. Journal of Geology, 1992, 100, 305-322.	1.4	83
45	Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos, 2013, 162-163, 264-278.	1.4	82
46	Counterclockwise P-T-t trajectory from the metamorphic sole of a Neo-Tethyan ophiolite (Turkey). Tectonophysics, 1997, 280, 295-310.	2.2	81
47	Core complex development in central Anatolia, Turkey. Geology, 1997, 25, 1023.	4.4	80
48	Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework. Tectonics, 1990, 9, 811-823.	2.8	79
49	Structural architecture and stratigraphic record of Late Mesozoic sedimentary basins in NE China: Tectonic archives of the Late Cretaceous continental margin evolution in East Asia. Earth-Science Reviews, 2017, 171, 598-620.	9.1	78
50	Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen, China. Bulletin of the Geological Society of America, 2015, 127, 1831-1854.	3.3	77
51	Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia—Turkey. Gondwana Research, 2015, 27, 594-611.	6.0	77
52	Metamorphism of the Central Anatolian Crystalline Complex, Turkey: influence of orogen-normal collision vs. wrench-dominated tectonics on P -T -t paths. Journal of Metamorphic Geology, 2001, 19, 411-432.	3.4	75
53	Tectonomagmatic Evolution of Bimodal Plutons in the Central Anatolian Crystalline Complex, Turkey. Journal of Geology, 2003, 111, 671-690.	1.4	75
54	A Tibetan model for the early Tertiary western United States. Journal of the Geological Society, 1999, 156, 929-941.	2.1	73

#	Article	IF	CITATIONS
55	Geochemistry of Neogene–Quaternary alkaline volcanism in western Anatolia, Turkey, and implications for the Aegean mantle. International Geology Review, 2010, 52, 631-655.	2.1	73
56	Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Research, 2015, 27, 701-718.	6.0	72
57	Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth-Science Reviews, 2017, 166, 1-37.	9.1	72
58	Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos, 2016, 245, 258-273.	1.4	68
59	Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. Bulletin of the Geological Society of America, 2011, 123, 2115-2141.	3.3	67
60	Continental margin ophiolites of Neotethys: Remnants of Ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes, 2015, 38, 230-249.	1.2	65
61	Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: Record of subduction initiation and backarc basin development. Gondwana Research, 2015, 27, 733-744.	6.0	64
62	Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos, 2009, 108, 207-223.	1.4	63
63	Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum". , 2000, , .		62
64	Tethyan ophiolites and Tethyan seaways. Journal of the Geological Society, 2019, 176, 899-912.	2.1	62
65	Structure of the Kizildag ophiolite, a slow-spread Cretaceous ridge segment north of the Arabian promontory. Geology, 1992, 20, 19.	4.4	60
66	Petrology and geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara melange, Turkey. Journal of Volcanology and Geothermal Research, 1998, 85, 265-284.	2.1	60
67	Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust. Earth-Science Reviews, 2020, 208, 103258.	9.1	58
68	Geochemistry and geochronology of the Neoproterozoic Pan-African Transcaucasian Massif (Republic) Tj ETQq Gondwana Research, 2007, 11, 92-108.	0 0 0 rgBT / 6.0	Overlock 10 T 56
69	Effects of plate convergence obliquity on timing and mechanisms of exhumation of a mid-crustal terrain, the Central Anatolian Crystalline Complex. Earth and Planetary Science Letters, 2001, 192, 191-205.	4.4	54
70	Application of the modern ophiolite concept with special reference to Precambrian ophiolites. Science China Earth Sciences, 2011, 54, 315-341.	5.2	53
71	Cryogenian ophiolite tectonics and metallogeny of the Central Eastern Desert of Egypt. International Geology Review, 2012, 54, 1870-1884.	2.1	53
72	Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere, 2018, 10, 35-53.	1.4	53

#	Article	IF	CITATIONS
73	Structural architecture and active deformation of the Nankai Accretionary Prism, Japan: Submersible survey results from the Tenryu Submarine Canyon. Bulletin of the Geological Society of America, 2009, 121, 1629-1646.	3.3	52
74	Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. , 2006, , .		51
75	Peri-Adriatic mélanges and their evolution in the Tethyan realm. International Geology Review, 2010, 52, 369-403.	2.1	51
76	Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. , 2000, , .		50
77	Collision tectonics of the Mediterranean region: Causes and consequences. , 2006, , .		50
78	The significance of sheeted dike complexes in ophiolites. GSA Today, 2008, 18, 4.	2.0	48
79	Geochemistry and geodynamic origin of the Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos, 2009, 113, 133-157.	1.4	48
80	Ophiolite pulses, mantle plumes and orogeny. Geological Society Special Publication, 2003, 218, 9-19.	1.3	47
81	Eocene mafic volcanism in northern Anatolia: its causes and mantle sources in the absence of active subduction. International Geology Review, 2013, 55, 1641-1659.	2.1	46
82	Structural architecture of the Western Alpine Ophiolites, and the Jurassic seafloor spreading tectonics of the Alpine Tethys. Journal of the Geological Society, 2019, 176, 913-930.	2.1	46
83	Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos, 2016, 246-247, 228-245.	1.4	45
84	Development and psychometric evaluation of workplace psychologically violent behaviours instrument. Journal of Clinical Nursing, 2008, 17, 1361-1370.	3.0	44
85	Structural anatomy of the Ligurian accretionary wedge (Monferrato, NW Italy), and evolution of superposed melanges. Bulletin of the Geological Society of America, 2013, 125, 1580-1598.	3.3	44
86	Late Oligocene–early Miocene olistostromes (sedimentary mélanges) as tectono-stratigraphic constraints to the geodynamic evolution of the exhumed Ligurian accretionary complex (Northern) Tj ETQq0 0	0 rg 8.1 /Ov	erlæk 10 Tf 50
87	Structure, geochemistry, and tectonic evolution of trench-distal backarc oceanic crust in the western Norwegian Caledonides, Solund-Stavfjord ophiolite (Norway). Bulletin of the Geological Society of America, 2012, 124, 1027-1047.	3.3	42
88	Small-scale polygenetic mélanges in the Ligurian accretionary complex, Northern Apennines, Italy, and the role of shale diapirism in superposed mélange evolution in orogenic belts. Tectonophysics, 2012, 568-569, 170-184.	2.2	42
89	Late Jurassic, high Ba–Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton. Geological Magazine, 2018, 155, 1040-1062.	1.5	42
90	Arc-trench rollback and forearc accretion: 1. A collision-induced mantle flow model for Tethyan ophiolites. Geological Society Special Publication, 2003, 218, 21-41.	1.3	41

#	Article	IF	CITATIONS
91	Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Island Arc, 2009, 18, 551-554.	1.1	40
92	Structure and geochemistry of the adakitic Horoz granitoid, Bolkar Mountains, south-central Turkey, and its tectonomagmatic evolution. International Geology Review, 2010, 52, 505-535.	2.1	40
93	Diamond-bearing ophiolites and their geological occurrence. Episodes, 2015, 38, 344-364.	1.2	40
94	Proterozoic ophiolites of the Arabian Shield and their significance in Precambrian tectonics. Geological Society Special Publication, 2003, 218, 685-700.	1.3	39
95	Pre-Alpine extensional tectonics of a peridotitelocalized oceanic core complex in the Late Jurassic, high-pressure Monviso ophiolite (Western Alps). Episodes, 2015, 38, 266-282.	1.2	39
96	Structure and petrology of the Nagaland-Manipur Hill Ophiolitic Mélange zone, NE India: A Fossil Tethyan Subduction Channel at the India – Burma Plate Boundary. Episodes, 2015, 38, 298-314.	1.2	39
97	Ophiolites, diamonds, and ultrahigh-pressure minerals: New discoveries and concepts on upper mantle petrogenesis. Lithosphere, 2018, 10, 3-13.	1.4	38
98	Oceanic Core Complex Development in Modern and Ancient Oceanic Lithosphere: Gabbroâ€Localized versus Peridotiteâ€Localized Detachment Models. Journal of Geology, 2010, 118, 95-109.	1.4	36
99	Formation of Taconic mélanges and broken formations in the Hamburg Klippe, Central Appalachian Orogenic Belt, Eastern Pennsylvania. Tectonophysics, 2012, 568-569, 215-229.	2.2	35
100	Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 2010, 52, 454-504.	2.1	34
101	Structure of Modern Oceanic Crust and Ophiolites and Implications for Faulting and Magmatism at Oceanic Spreading Centers. Geophysical Monograph Series, 2013, , 219-265.	0.1	34
102	Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle. Mineralogy and Petrology, 2014, 108, 49-69.	1.1	34
103	Structure and tectonics of subophiolitic mélanges in the western Hellenides (Greece): implications for ophiolite emplacement tectonics. International Geology Review, 2010, 52, 423-453.	2.1	33
104	Jurassic–Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey. Solid Earth, 2014, 5, 77-108.	2.8	33
105	Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex, Turkey. , 2006, , .		32
106	Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 2014, 356, 1-4.	2.1	32
107	Diamonds Discovered from High–Cr Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite, Albania. Acta Geologica Sinica, 2017, 91, 455-468.	1.4	32
108	Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. Geological Society Special Publication, 2009, 321, 197-223.	1.3	31

#	Article	IF	CITATIONS
109	Fault kinematics in supradetachment basin formation, Menderes core complex of western Turkey. Tectonophysics, 2013, 608, 1394-1412.	2.2	31
110	Detrital zircon U–Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution. Tectonophysics, 2015, 665, 58-78.	2.2	31
111	Does subduction of mass transport deposits (MTDs) control seismic behavior of shallow–level megathrusts at convergent margins?. Gondwana Research, 2018, 60, 186-193.	6.0	31
112	Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. , 2006, , .		31
113	Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. Journal of Asian Earth Sciences, 2015, 110, 72-84.	2.3	29
114	Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo suture zone (southern Tibet). Lithosphere, 2018, 10, 109-132.	1.4	29
115	Slab-controlled elemental–isotopic enrichments during subduction initiation magmatism and variations in forearc chemostratigraphy. Earth and Planetary Science Letters, 2020, 538, 116217.	4.4	29
116	Geochemistry, Re–Os isotopes and highly siderophile element abundances in the Eastern Pontide peridotites (NE Turkey): Multiple episodes of melt extraction–depletion, melt–rock interaction and fertilization of the Rheic Ocean mantle. Gondwana Research, 2015, 27, 612-628.	6.0	28
117	Multiple episodes of melting, depletion, and enrichment of the Tethyan mantle: Petrogenesis of the peridotites and chromitites in the Jurassic Skenderbeu massif, Mirdita ophiolite, Albania. Lithosphere, 2018, 10, 54-78.	1.4	28
118	Episodic dike intrusions in the northwestern Sierra Nevada, California: Implications for multistage evolution of a Jurassic arc terrane. Geology, 1991, 19, 180.	4.4	27
119	Modification of garnet by fluid infiltration during regional metamorphism in garnet through sillimanite-zone rocks, Dutchess County, New York. American Mineralogist, 1996, 81, 696-705.	1.9	27
120	Late Cretaceous subduction initiation and Palaeocene–Eocene slab breakoff magmatism in South-Central Anatolia, Turkey. International Geology Review, 2013, 55, 66-87.	2.1	27
121	Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 2016, 121, 34-55.	2.3	27
122	Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 2018, 10, 156-169.	1.4	27
123	Mineralogy and geochemistry of peridotites and chromitites in the Aladag Ophiolite (southern) Tj ETQq1 1 0.784 176, 958-974.	314 rgBT 2.1	/Overlock 10 26
124	Archean versus Phanerozoic oceanic crust formation and tectonics: Ophiolites through time. Geosystems and Geoenvironment, 2022, 1, 100004.	3.2	26
125	Geology and geochemistry of the synextensional Salihli granitoid in the Menderes core complex, western Anatolia, Turkey. International Geology Review, 2010, 52, 336-368.	2.1	25
126	Petrology and geochemistry of high Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Reviews, 2015, 70, 188-207.	2.7	24

#	Article	IF	CITATIONS
127	Nd–Sr–Pb isotopic composition and mantle sources of Triassic rift units in the Serbo-Macedonian and the western Rhodope massifs (Bulgaria–Greece). Geological Magazine, 2012, 149, 146-152.	1.5	23
128	Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	23
129	Propagating rift tectonics of a Caledonian marginal basin: Multi-stage seafloor spreading history of the Solund-Stavfjord ophiolite in western Norway. Tectonophysics, 1997, 280, 213-238.	2.2	22
130	Seamount formation and associated caldera complex and hydrothermal mineralization in ancient oceanic crust, Troodos ophiolite (Cyprus). Tectonophysics, 1998, 292, 189-210.	2.2	22
131	New interpretation of the Franciscan mélange at San Simeon coast, California: tectonic intrusion into an accretionary prism. International Geology Review, 2015, 57, 824-842.	2.1	22
132	Geochemical, Geochronological, and Sr-Nd Isotopic Constraints on the Origin of the Mafic Dikes from the Pozanti-Karsanti Ophiolite: Implications for Tectonic Evolution. Journal of Geology, 2017, 125, 223-239.	1.4	22
133	Introduction: Characteristics and tectonic settings of mélanges, and their significance for societal and engineering problems. , 2011, , .		21
134	Geochemistry and tectonic significance of protoâ€ophiolitic metamafic units from the Serboâ€Macedonian and western Rhodope massifs (Bulgariaâ€Greece). International Geology Review, 2010, 52, 298-335.	2.1	20
135	Structural architecture and tectonic evolution of the Fangzheng sedimentary basin (NE China), and implications for the kinematics of the Tan-Lu fault zone. Journal of Asian Earth Sciences, 2015, 106, 34-48.	2.3	19
136	Seafloor spreading structure, geochronology, and tectonic evolution of the Küre ophiolite, Turkey: A Jurassic continental backarc basin oceanic lithosphere in southern Eurasia. Lithosphere, 2018, 10, 14-34.	1.4	19
137	Metamorphism during Alpine Crustal Thickening and Extension in Central Anatolia, Turkey: the Nig[breve]de Metamorphic Core Complex. Journal of Petrology, 1998, 39, 1385-1403.	2.8	19
138	Structure and tectonics of an Early Mesozoic oceanic basement in the northern Sierra Nevada Metamorphic Belt, California: Evidence for transform faulting and ensimatic arc evolution. Tectonics, 1989, 8, 999-1014.	2.8	18
139	Cyclic volcanic stratigraphy in a late ordovician marginal basin, West Norwegian Caledonides. Bulletin of Volcanology, 2001, 63, 164-178.	3.0	18
140	Tectonic Topography Changes in Cenozoic East Asia: A Landscape Erosionâ€ S ediment Archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 2018, 19, 1731-1750.	2.5	18
141	Timing of the late Jehol Biota: New geochronometric constraints from the Jixi Basin, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 492, 41-49.	2.3	18
142	Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania. Lithos, 2009, 108, 192-206.	1.4	17
143	Structural architecture and tectonic evolution of the Cenozoic Zhanhua Sag along the Tan–Lu Fault Zone in the eastern North China: Reconciliation of tectonic models on the origin of the Bohai Bay Basin. Tectonophysics, 2020, 775, 228303.	2.2	17
144	Geochemistry and geochronology of OIB-type, Early Jurassic magmatism in the Zhangguangcai range, NE China, as a result of continental back-arc extension. Geological Magazine, 2021, 158, 143-157.	1.5	17

#	Article	IF	CITATIONS
145	Hydrothermal alteration and tectonic evolution of an intermediate- to fast-spreading back-arc oceanic crust: Late Ordovician Solund-Stavfjord ophiolite, western Norway. Island Arc, 2005, 14, 517-541.	1.1	16
146	Tectonic control of bioalteration in modern and ancient oceanic crust as evidenced by carbon isotopes. Island Arc, 2006, 15, 143-155.	1.1	16
147	Geochemical modelling of early Eocene adakitic magmatism in the Eastern Pontides, NE Anatolia: continental crust or subducted oceanic slab origin?. International Geology Review, 2013, 55, 2083-2095.	2.1	16
148	Late Cretaceous tectonic switch from a Western Pacific―to an Andeanâ€Type continental margin evolution in East Asia, and a foreland basin development in <scp>NE</scp> China. Terra Nova, 2017, 29, 335-342.	2.1	16
149	Geochemistry and Geochronology of the Accreted Mafic Rocks From the Hengchun Peninsula, Southern Taiwan: Origin and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 2019, 124, 2469-2491.	3.4	16
150	Tectonic Significance of Post-Accretion Rifting of a Mesozoic Island-Arc Terrane in the Northern Sierra Nevada, California. Journal of Geology, 1989, 97, 503-518.	1.4	16
151	Tectonic evolution of the Ankara Mélange and associated Eldivan ophiolite near Hançili, central Turkey. , 2011, , .		15
152	Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle. Mineralogy and Petrology, 2018, 112, 685-704.	1.1	15
153	The effect of overburden thickness on deformation mechanisms in the Keping fold-thrust belt, southwestern Chinese Tian Shan Mountains: Insights from analogue modeling. Tectonophysics, 2019, 753, 79-92.	2.2	15
154	Guadalupian (Permian) onset of subduction zone volcanism and geodynamic turnover from passive- to active-margin tectonics in southeast China. Bulletin of the Geological Society of America, 2020, 132, 130-148.	3.3	15
155	A Jurassic oceanic core complex in the high-pressure Monviso ophiolite (western Alps, NW Italy). Lithosphere, 0, , L458.1.	1.4	14
156	Stratigraphy and provenance of forearc sequences in the Lichi Mélange, Coastal Range: Geological records of the active Taiwan arcâ€continent collision. Journal of Geophysical Research: Solid Earth, 2017, 122, 7408-7436.	3.4	14
157	Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. International Geology Review, 2020, 62, 665-682.	2.1	13
158	Mesozoic assimilation of oceanic crust and island arc into the North American continental margin in California and Nevada: Insights from geophysical data. , 2000, , .		11
159	Eastern Mediterranean geodynamics. International Geology Review, 2010, 52, 111-116.	2.1	11
160	Precambrian zircons in chromitites of the Cretaceous Aladag ophiolite (Turkey) indicate deep crustal recycling in oceanic mantle. Precambrian Research, 2020, 350, 105838.	2.7	11
161	Magmatic record of the Mesozoic geology of Hainan Island and its implications for the Mesozoic tectonomagmatic evolution of SE China: effects of slab geometry and dynamics in continental tectonics. Geological Magazine, 2021, 158, 118-142.	1.5	11
162	Volcanic evolution of oceanic crust in a Late Ordovician back-arc basin: The Solund-Stavfjord Ophiolite Complex, West Norway. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	10

#	Article	IF	CITATIONS
163	Structural Profile and Development of the Accretionary Complex in the Nankai Trough, Southwest Japan: Results of Submersible Studies. Modern Approaches in Solid Earth Sciences, 2011, , 169-196.	0.3	10
164	New synthesis of the Izmir-Ankara-Erzincan suture zone and the Ankara mélange in northern Anatolia based on new geochemical and geochronological constraints. , 0, , .		10
165	Ophiolitic thrust nappes in western Nevada: implications for the Cordilleran Orogen. Journal of the Geological Society, 1988, 145, 969-975.	2.1	10
166	Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. American Mineralogist, 2017, , .	1.9	9
167	Diachronous uplift and cooling history of the Menderes core complex, western Anatolia (Turkey), based on new Zircon (U-Th)/He ages. Tectonophysics, 2017, 694, 181-196.	2.2	9
168	The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African) Tj ETQq0 0 Sciences, 2017, 127, 16-50.	0 rgBT /C 2.0	overlock 10 T 9
169	An overview of the lithological and geochemical characteristics of the Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt, southern West Greenland. , 2008, , 51-76.		8
170	Tokoro Belt (NE Hokkaido): an exhumed, Jurassic – Early Cretaceous seamount in the Late Cretaceous accretionary prism of northern Japan. Geological Magazine, 2021, 158, 72-83.	1.5	8
171	Rapid Exhumation of Subducted Sediments Along an Out-of-Sequence Thrust in the Modern Eastern Nankai Accretionary Prism. Modern Approaches in Solid Earth Sciences, 2011, , 215-227.	0.3	8
172	Diking of various slab melts beneath forearc spreading center and age constraints of the subducted slab. Earth and Planetary Science Letters, 2022, 579, 117367.	4.4	8
173	Ediacaran magmatism and rifting along the northern margin of the Tarim craton: Implications for the late Neoproterozoic Rodinia configuration and breakup. Bulletin of the Geological Society of America, 2023, 135, 367-388.	3.3	8
174	Characterization and interpretation of <i>P-T</i> paths with multiple thermal peaks. Geological Society Special Publication, 1998, 138, 53-60.	1.3	7
175	Nanoscale Diopside and Spinel Exsolution in Olivine from Dunite of the Tethyan Ophiolites, Southwestern Turkey: Implications for the Multi-Stage Process. Journal of Nanoscience and Nanotechnology, 2017, 17, 6587-6596.	0.9	7
176	Fingerprinting subducted oceanic crust and Hainan Plume in the melt sources of Cenozoic Basalts from the South China Sea Region. Terra Nova, 2021, 33, 21-29.	2.1	7
177	Subduction zone processes and crustal growth mechanisms at Pacific Rim convergent margins: modern and ancient analogues. Geological Magazine, 2021, 158, 1-12.	1.5	7
178	Petrological and Os Isotopic Characteristics of Zedong Peridotites in the Eastern Yarlung–Zangbo Suture in Tibet. Acta Geologica Sinica, 2018, 92, 442-461.	1.4	6
179	Meteora: a Billion Years of Geological History in Greece to Create a World Heritage Site. Geoheritage, 2020, 12, 1.	2.8	6
180	A middle Triassic seamount within the western Yarlung Zangbo suture zone, Tibet: The earliest seafloor spreading record of Neotethys to the North of East Gondwana. Lithos, 2021, 388-389, 106062.	1.4	6

#	Article	IF	CITATIONS
181	Enhancing Scientific Literacy Through the Use of Information Technology in Introductory Geoscience Classes. Journal of Geoscience Education, 1997, 45, 308-313.	1.4	5
182	Probing the Troodos Ophiolite: IGCPâ€649 Workshop and Field Excursion Held in Agros yprus. Acta Geologica Sinica, 2016, 90, 1041-1044.	1.4	5
183	Origin and significance of diamonds and other exotic minerals in the Dingqing ophiolite peridotites, eastern Bangong-Nujiang suture zone, Tibet. Lithosphere, 2017, , L607.1.	1.4	5
184	A structural approach to the genesis of chrome ores within the Vourinos ophiolite (Greece): Significance of ductile and brittle deformation processes in the formation of economic ore bodies in oceanic upper mantle peridotites. Ore Geology Reviews, 2020, 125, 103684.	2.7	5
185	Reply [to "Comment on †Tectonic evolution of the Troodos ophiolite within the Tethyan framework'â€] Tectonics, 1992, 11, 916-923.	· 2.8	4
186	The Geoheritage of Mount Olympus: Ancient Mythology and Modern Geology. Geoheritage, 2022, 14, 1.	2.8	4
187	Multi-stage Process of the Bulqiza Chromitites, Eastern Ophiolitic Belt, Albania. Acta Geologica Sinica, 2016, 90, 245-245.	1.4	3
188	Petrological and Re-Os isotopic constraints on the origin and tectonic setting of the Cuobuzha peridotite, Yarlung Zangbo suture zone, southwest Tibet, China. Lithosphere, 0, , L590.1.	1.4	3
189	Geochemical and Isotopic Characterization of Middle Eocene Hybrid Magmatism in the Gangdese Belt (Tibet) and Its Ancient Indian Crustal Fingerprint. Journal of Geology, 2018, 126, 601-620.	1.4	3
190	Early Devonian ultrapotassic magmatism in the North China Craton: geochemical and isotopic evidence for subcontinental lithospheric mantle metasomatism by subducted sediment-derived fluids. Geological Magazine, 2021, 158, 158-174.	1.5	3
191	Magmatic and tectonic controls on the evolution of oceanic magma chambers at slow-spreading ridges: Perspectives from ophiolitic and continental layered intrusions. , 2000, , .		3
192	Thematic Section: Evolution of ophiolites in convergent and divergent plate boundaries (Part 2). Island Arc, 2006, 15, 4-6.	1.1	2
193	Mineralogy, geochemistry, and melt evolution of the Kalaymyo peridotite massif in the Indo-Myanmar Ranges (western Myanmar), and tectonic implications. Lithosphere, 0, , L589.1.	1.4	2
194	Characterization of modern and historical seismic–tsunamic events and their global–societal impacts. Geological Society Special Publication, 2021, 501, 1-22.	1.3	2
195	The 9 April 2013 Kaki earthquake (Mw 6.3) in SW Iran occurred along a blind backthrust in the Fars geological province of the Zagros Fold and Thrust Belt. Geological Society Special Publication, 2021, 501, 71-85.	1.3	2
196	Tectonomagmatic Evolution of Bimodal Plutons in the Central Anatolian Crystalline Complex, Turkey: A Reply. Journal of Geology, 2005, 113, 497-499.	1.4	1
197	Alpine concepts in geology. International Geology Review, 2010, 52, 1001-1008.	2.1	1
198	Diamond and Recycled Mantle: A New Perspective——Introduction of IGCP 649 Project. Acta Geologica Sinica, 2015, 89, 1036-1038.	1.4	1

#	Article	IF	CITATIONS
199	Neotethyan Ophiolites and Their Geodynamic Evolution During the Mesozoic: A Global Overview. Acta Geologica Sinica, 2020, 94, 76-77.	1.4	1
200	"Rootless―Ophiolites above the Exhuming Pelagonian Core Complex, Northern Greece. Bulletin of the Geological Society of Greece, 2019, 54, 60.	0.5	1
201	Chalcophile element (Cu, Zn, Pb) and Ga distribution patterns in ancient and modern oceanic crust and their sources: Petrogenetic modelling and a global synthesis. Gondwana Research, 2022, 109, 394-415.	6.0	1
202	Albian–Cenomanian granitoid magmatism in Eastern and Central Tibet as a result of diachronous, continental collision induced slab tear propagation. Bulletin of the Geological Society of America, 2023, 135, 799-818.	3.3	1
203	Correction to "Structure and tectonics of an Early Mesozoic oceanic basement in the northern Sierra Nevada Metamorphic Belt, California: Evidence for transform faulting and ensimatic arc evolutionâ€: Tectonics, 1990, 9, 205-205.	2.8	0
204	Compositions & Melt Evolution of Upper Mantle Peridotites in the Tethyan Ophiolites. Acta Geologica Sinica, 2016, 90, 211-211.	1.4	0
205	Tectonic Evolution of the Dongbo Ophiolite in Western Yarlung Zangbo Suture Zone, Xizang(Tibet). Acta Geologica Sinica, 2016, 90, 221-221.	1.4	0
206	Crustal Architecture, Geochemistry and Geochronology of the Ophiolitesand Ophiolitic Mélangesin Southeastern Anatolia. Acta Geologica Sinica, 2016, 90, 236-237.	1.4	0
207	Geological Occurrence of Diamond-bearing Ophiolites. Acta Geologica Sinica, 2016, 90, 246-246.	1.4	0
208	Discovery of a CalrO ₃ â€ŧype Al ₂ O ₃ phase that implies crustâ€mantle recycling in ophioliteâ€hosted corundum from the Luobusa ophiolite, Tibet. Acta Geologica Sinica, 2019, 93, 166-166.	1.4	0
209	Early Devonian Ultrapotassic Magmatism in the North China Craton: Geochemical and Isotopic Evidence for Subcontinental Lithospheric Mantle Metasomatism by Subducted Sediment–Derived Fluid. Acta Geologica Sinica, 2020, 94, 43-43.	1.4	0
210	Geochemistry and Geochronology of OlBâ€ŧype Early Jurassic Magmatism in the Zhangguangcai Range, NE China, as a Result of Continental Backâ€arc Extension. Acta Geologica Sinica, 2020, 94, 13-13.	1.4	0
211	Internal lithospheric rotation at the initiation of intra-oceanic rift-drift: An example of proto-transform tectonics from the Vourinos Ophiolite, Greece. , 2021, , 55-74.		0
212	Report on the ad-hoc review of Episodes, memorandum of understanding (MoU) between the IUGS and the Geological Society of India. Episodes, 2017, 40, 85-89.	1.2	0