
Ioannis K Zervantonakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13515-13520.	7.1	744
2	Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nature Protocols, 2012, 7, 1247-1259.	12.0	518
3	Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery, 2016, 6, 630-649.	9.4	369
4	A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nature Biotechnology, 2020, 38, 199-209.	17.5	324
5	In Vitro Model of Tumor Cell Extravasation. PLoS ONE, 2013, 8, e56910.	2.5	201
6	Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences, 2013, 70, 1335-1356.	5.4	183
7	Transportâ€mediated angiogenesis in 3D epithelial coculture. FASEB Journal, 2009, 23, 2155-2164.	0.5	179
8	Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integrative Biology (United Kingdom), 2013, 5, 381-389.	1.3	150
9	A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab on A Chip, 2011, 11, 497-507.	6.0	145
10	Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Annals of Biomedical Engineering, 2010, 38, 1164-1177.	2.5	140
11	A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab on A Chip, 2012, 12, 4855.	6.0	134
12	Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics, 2011, 5, 013406.	2.4	117
13	Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nature Reviews Cancer, 2022, 22, 323-339.	28.4	107
14	Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. PLoS ONE, 2012, 7, e37333.	2.5	102
15	Controlled electromechanical cell stimulation on-a-chip. Scientific Reports, 2015, 5, 11800.	3.3	97
16	Establishment of Patient-Derived Tumor Xenograft Models of Epithelial Ovarian Cancer for Preclinical Evaluation of Novel Therapeutics. Clinical Cancer Research, 2017, 23, 1263-1273.	7.0	95
17	Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. Journal of Controlled Release, 2016, 238, 281-288.	9.9	86
18	Surfaceâ€Treatmentâ€Induced Threeâ€Dimensional Capillary Morphogenesis in a Microfluidic Platform. Advanced Materials, 2009, 21, 4863-4867.	21.0	85

#	Article	IF	CITATIONS
19	Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. PLoS ONE, 2012, 7, e50582.	2.5	78
20	Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano, 2020, 14, 2224-2237.	14.6	64
21	A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence. Physics in Medicine and Biology, 2007, 52, 4063-4080.	3.0	61
22	BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biology, 2018, 16, e2005756.	5.6	56
23	Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight, 2016, 1, .	5.0	45
24	Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nature Communications, 2017, 8, 365.	12.8	44
25	Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell, 2020, 38, 829-843.e4.	16.8	40
26	Combined MEK and BCL-2/XL Inhibition Is Effective in High-Grade Serous Ovarian Cancer Patient–Derived Xenograft Models and BIM Levels Are Predictive of Responsiveness. Molecular Cancer Therapeutics, 2019, 18, 642-655.	4.1	39
27	Endothelial monolayer permeability under controlled oxygen tension. Integrative Biology (United) Tj ETQq1 1 0.7	84314 rgE	BT <mark>/Overlock</mark>
28	Controlled Drug Release and Chemotherapy Response in a Novel Acoustofluidic 3D Tumor Platform. Small, 2016, 12, 2616-2626.	10.0	33
29	Mechanical Stress Signaling in Pancreatic Cancer Cells Triggers p38 MAPK- and JNK-Dependent Cytoskeleton Remodeling and Promotes Cell Migration via Rac1/cdc42/Myosin II. Molecular Cancer Research, 2022, 20, 485-497.	3.4	33
30	Concentration gradients in microfluidic 3D matrix cell culture systems. International Journal of Micro-nano Scale Transport, 2010, 1, 27-36.	0.2	30
31	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 2281-2293.	3.4	29
32	A microfluidic platform for studying the effects of small temperature gradients in an incubator environment. Biomicrofluidics, 2008, 2, 34106.	2.4	24
33	Fibroblast–tumor cell signaling limits HER2 kinase therapy response via activation of MTOR and antiapoptotic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16500-16508.	7.1	23
34	A Mathematical Model of Breast Tumor Progression Based on Immune Infiltration. Journal of Personalized Medicine, 2021, 11, 1031.	2.5	18
35	Spectrally resolved multidepth fluorescence imaging. Journal of Biomedical Optics, 2011, 16, 096015.	2.6	17
36	Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework. PLoS ONE, 2014, 9, e99640.	2.5	17

#	Article	IF	CITATIONS
37	Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. PLoS Computational Biology, 2020, 16, e1007909.	3.2	15
38	A protein interaction map for cell-cell adhesion regulators identifies DUSP23 as a novel phosphatase for β-catenin. Scientific Reports, 2016, 6, 27114.	3.3	13
39	A SNAI2-PEAK1-INHBA stromal axis drives progression and lapatinib resistance in HER2-positive breast cancer by supporting subpopulations of tumor cells positive for antiapoptotic and stress signaling markers. Oncogene, 2021, 40, 5224-5235.	5.9	11
40	A PDE Model of Breast Tumor Progression in MMTV-PyMT Mice. Journal of Personalized Medicine, 2022, 12, 807.	2.5	7
41	Investigating key cell types and molecules dynamics in PyMT mice model of breast cancer through a mathematical model. PLoS Computational Biology, 2022, 18, e1009953.	3.2	5
42	Registered report: Discovery and preclinical validation of drug indications using compendia of public gene expression data. ELife, 2015, 4, e06847.	6.0	3
43	Improving cancer combination therapy by timing drug administration. Science Translational Medicine, 2020, 12, .	12.4	1
44	Not all fibroblasts are equal in cancer. Science Translational Medicine, 2020, 12, .	12.4	1
45	Spectrum resolved fluorescence imaging in multi-focal volume holographic microscopy. , 2011, , .		0
46	Theoretical and Experimental Framework of Neurite Response to Chemical Gradients in 3D Matrices. Biophysical Journal, 2014, 106, 572a.	0.5	0
47	Abstract A7: Targeting mutant p53 and cell-cell adhesion in ovarian cancer. , 2013, , .		0
48	Abstract PR01: Adaptive resistance of patient-derived ovarian cancer cells to PI3K/mTOR inhibition. , 2015, , .		0
49	Abstract PR12: Mutant p53 drives early events in fallopian tube tumorigenesis through mesenchyme-associated autocrine production of matrix that supports survival and mesothelial intercalation , 2016, , .		0
50	Abstract B48: Design of effective combination therapies for high-grade serous ovarian cancer using patient-derived xenograft models , 2016, , .		0
51	Abstract 3843: Design of effective combination therapies for high-grade serous ovarian cancer using patient-derived xenograft models. , 2016, , .		0
52	Abstract PR01: Systems analysis of signaling pathway adaptation to design effective PI3K-based combination therapies using ovarian cancer patient-derived xenografts. , 2017, , .		0
53	Abstract 4033: Combined MEK and BCL-2/XLinhibition as a potential drug combination for the treatment of high-grade serous ovarian cancer. , 2017, , .		0
54	Cancer-immune topology influences lung cancer evolution. Science Translational Medicine, 2020, 12, .	12.4	0

#	Article	IF	CITATIONS
55	Uncovering metabolic states in cytotoxic T cells, one cell at a time. Science Translational Medicine, 2020, 12, .	12.4	0
56	Modeling the impact of genetic heterogeneity on immunotherapy. Science Translational Medicine, 2020, 12, .	12.4	0
57	Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. , 2020, 16, e1007909.		0
58	Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. , 2020, 16, e1007909.		0
59	Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. , 2020, 16, e1007909.		0
60	Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. , 2020, 16, e1007909.		0