Kenneth B Bader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8322490/publications.pdf

Version: 2024-02-01

414414 430874 1,050 39 18 32 citations h-index g-index papers

47 47 47 897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and Characterization of an Ultrasound Transducer for Combined Histotripsy-Thrombolytic Therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 156-165.	3.0	11
2	Ultrasound for Aesthetic Applications. Journal of Ultrasound in Medicine, 2022, 41, 1597-1607.	1.7	4
3	Histotripsy Bubble Cloud Contrast With Chirp-Coded Excitation in Preclinical Models. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 787-794.	3.0	1
4	(More than) doubling down: Effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLoS ONE, 2022, 17, e0261567.	2.5	4
5	Effect of Thrombin and Incubation Time on Porcine Whole Blood Clot Elasticity and Recombinant Tissue Plasminogen Activator Susceptibility. Ultrasound in Medicine and Biology, 2022, 48, 1567-1578.	1.5	3
6	Assessment of Collaborative Robot (Cobot)-Assisted Histotripsy for Venous Clot Ablation. IEEE Transactions on Biomedical Engineering, 2021, 68, 1220-1228.	4.2	14
7	An In vitro System to Gauge the Thrombolytic Efficacy of Histotripsy and a Lytic Drug. Journal of Visualized Experiments, 2021, , .	0.3	1
8	Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Physics in Medicine and Biology, 2021, 66, 165004.	3.0	4
9	Clot Degradation Under the Action of Histotripsy Bubble Activity and a Lytic Drug. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2942-2952.	3.0	9
10	Assessment of histological characteristics, imaging markers, and rt-PA susceptibility of ex vivo venous thrombi. Scientific Reports, 2021, 11, 22805.	3.3	8
11	In Vitro Thrombolytic Efficacy of Single- and Five-Cycle Histotripsy Pulses and rt-PA. Ultrasound in Medicine and Biology, 2020, 46, 336-349.	1.5	26
12	Assessment of Chirp-Coded Excitation to Monitor Histotripsy Bubble Clouds. , 2020, , .		2
13	In Vitro Testing of a Cobot System to Assist Histotripsy Clot Ablation. , 2020, , .		1
14	In vitroassessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Physics in Medicine and Biology, 2019, 64, 145019.	3.0	9
15	Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Physics in Medicine and Biology, 2019, 64, 115012.	3.0	10
16	Assessment of histotripsy-induced liquefaction with diagnostic ultrasound and magnetic resonance imaging <i>in vitro</i> and <i>ex vivo</i> . Physics in Medicine and Biology, 2019, 64, 095023.	3.0	9
17	For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. Ultrasound in Medicine and Biology, 2019, 45, 1056-1080.	1.5	117
18	High Frame Rate Imaging to Enhance the Dissolution of Histotripsy-Induced Bubble Clouds. , 2019, , .		4

#	Article	IF	CITATIONS
19	MRI â€guided transurethral insonation of silicaâ€shell phaseâ€shift emulsions in the prostate with an advanced navigation platform. Medical Physics, 2019, 46, 774-788.	3.0	2
20	The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability. Physics in Medicine and Biology, 2018, 63, 095010.	3.0	19
21	<italic>Post Hoc</italic> Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction <italic>in Vitro</italic> . IEEE Transactions on Medical Imaging, 2018, 37, 106-115.	8.9	39
22	The influence of gas diffusion on bubble persistence in shock-scattering histotripsy. Journal of the Acoustical Society of America, 2018, 143, EL481-EL486.	1.1	15
23	<i>In vitro</i> thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas. Physics in Medicine and Biology, 2017, 62, 517-538.	3.0	26
24	Quantitative Frequency-Domain Passive Cavitation Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 177-191.	3.0	113
25	Predicting the growth of nanoscale nuclei by histotripsy pulses. Physics in Medicine and Biology, 2016, 61, 2947-2966.	3.0	26
26	Efficacy of histotripsy combined with rt-PA <i>in vitro</i> . Physics in Medicine and Biology, 2016, 61, 5253-5274.	3.0	48
27	Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms. Ultrasound in Medicine and Biology, 2016, 42, 1701-1705.	1.5	25
28	Sonothrombolysis. Advances in Experimental Medicine and Biology, 2016, 880, 339-362.	1.6	51
29	Development of a hybrid finite difference solution of the Westervelt equation using the fast nearfield method as a boundary condition for focused sources: or microbubble nuclei interaction with histotripsy shockwaves. AIP Conference Proceedings, 2015, , .	0.4	0
30	Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes. Journal of Thrombosis and Thrombolysis, 2015, 40, 144-155.	2.1	23
31	Shaken and Stirred: Mechanisms of Ultrasound-Enhanced Thrombolysis. Ultrasound in Medicine and Biology, 2015, 41, 187-196.	1.5	105
32	Broadband Attenuation Measurements of Phospholipid-Shelled Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2014, 40, 410-421.	1.5	68
33	Cavitation thresholds of contrast agents in an <i>in vitro</i> human clot model exposed to 120-kHz ultrasound. Journal of the Acoustical Society of America, 2014, 135, 646-653.	1.1	23
34	Gauging the likelihood of stable cavitation from ultrasound contrast agents. Physics in Medicine and Biology, 2013, 58, 127-144.	3.0	103
35	Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Physics in Medicine and Biology, 2013, 58, 6541-6563.	3.0	46
36	The effect of static pressure on the strength of inertial cavitation events. Journal of the Acoustical Society of America, 2012, 132, 2286-2291.	1.1	19

3

#	Article	IF	CITATIONS
37	Experimental validation of a finite-difference model for the prediction of transcranial ultrasound fields based on CT images. Physics in Medicine and Biology, 2012, 57, 8005-8022.	3.0	22
38	The effect of static pressure on the inertial cavitation threshold. Journal of the Acoustical Society of America, 2012, 132, 728-737.	1.1	32
39	Inertial cavitation threshold dependence on static pressures. Proceedings of Meetings on Acoustics, 2010, , .	0.3	1