
Takeshi Nitta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8322486/publications.pdf Version: 2024-02-01

Τλέρομι Νιττλ

#	Article	IF	CITATIONS
1	The transcription factor Sox4 is required for thymic tuft cell development. International Immunology, 2022, 34, 45-52.	4.0	7
2	Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nature Communications, 2022, 13, .	12.8	23
3	The fibroblast: An emerging key player in thymic T cell selection. Immunological Reviews, 2021, 302, 68-85.	6.0	16
4	OPG Production Matters Where It Happened. Cell Reports, 2020, 32, 108124.	6.4	56
5	Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδT cell compartments. Nature Communications, 2020, 11, 3769.	12.8	44
6	Fibroblasts as a source of self-antigens for central immune tolerance. Nature Immunology, 2020, 21, 1172-1180.	14.5	54
7	Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nature Metabolism, 2020, 2, 1382-1390.	11.9	60
8	Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Frontiers in Immunology, 2020, 11, 620894.	4.8	28
9	Retroviral Gene Transduction into T Cell Progenitors for Analysis of T Cell Development in the Thymus. Methods in Molecular Biology, 2020, 2111, 193-203.	0.9	2
10	Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nature Metabolism, 2019, 1, 868-875.	11.9	53
11	T cell receptor signaling for $\hat{I}^{\hat{J}}\hat{I}$ T cell development. Inflammation and Regeneration, 2019, 39, 6.	3.7	51
12	Ras homolog gene family H (RhoH) deficiency induces psoriasis-like chronic dermatitis by promoting TH17Âcell polarization. Journal of Allergy and Clinical Immunology, 2019, 143, 1878-1891.	2.9	14
13	Host defense against oral microbiota by bone-damaging T cells. Nature Communications, 2018, 9, 701.	12.8	215
14	Rasal3-mediated T cell survival is essential for inflammatory responses. Biochemical and Biophysical Research Communications, 2018, 496, 25-30.	2.1	12
15	Arginine methylation controls the strength of γc-family cytokine signaling in T cell maintenance. Nature Immunology, 2018, 19, 1265-1276.	14.5	61
16	Mice lacking all of the <i>Skint</i> family genes. International Immunology, 2018, 30, 301-309.	4.0	11
17	Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nature Immunology, 2017, 18, 675-682.	14.5	119
18	Human thymoproteasome variations influence CD8 T cell selection. Science Immunology, 2017, 2, .	11.9	16

Τακές Νιττά

#	Article	IF	CITATIONS
19	Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver. Biochemical and Biophysical Research Communications, 2017, 493, 437-443.	2.1	14
20	Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 2017, 97, 1295-1349.	28.8	347
21	LOX Fails to Substitute for RANKL in Osteoclastogenesis. Journal of Bone and Mineral Research, 2017, 32, 434-439.	2.8	41
22	γÎTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. Journal of Clinical Investigation, 2017, 128, 415-426.	8.2	32
23	IL-17-producing $\hat{I}^{\hat{J}}$ T cells enhance bone regeneration. Nature Communications, 2016, 7, 10928.	12.8	271
24	Thymic stromal cell subsets for T cell development. Cellular and Molecular Life Sciences, 2016, 73, 1021-1037.	5.4	28
25	The thymic cortical epithelium determines the <scp>TCR</scp> repertoire of <scp>IL</scp> â€17â€producing γÎT cells. EMBO Reports, 2015, 16, 638-653.	4.5	45
26	Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell, 2015, 163, 975-987.	28.9	327
27	The Ras GTPase-Activating Protein Rasal3 Supports Survival of Naive T Cells. PLoS ONE, 2015, 10, e0119898.	2.5	34
28	Thymic Medullary Epithelium and Thymocyte Self-Tolerance Require Cooperation between CD28–CD80/86 and CD40–CD40L Costimulatory Pathways. Journal of Immunology, 2014, 192, 630-640.	0.8	48
29	Differential Function of Themis CABIT Domains during T Cell Development. PLoS ONE, 2014, 9, e89115.	2.5	10
30	TRAF3 enforces the requirement for T cell cross-talk in thymic medullary epithelial development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21107-21112.	7.1	30
31	The Development of T Lymphocytes in Fetal Thymus Organ Culture. Methods in Molecular Biology, 2013, 946, 85-102.	0.9	20
32	MicroRNAs Control the Maintenance of Thymic Epithelia and Their Competence for T Lineage Commitment and Thymocyte Selection. Journal of Immunology, 2012, 189, 3894-3904.	0.8	54
33	Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20572-20577.	7.1	72
34	Rank Signaling Links the Development of Invariant γδT Cell Progenitors and Aire+ Medullary Epithelium. Immunity, 2012, 36, 427-437.	14.3	152
35	Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit β5t. European Journal of Immunology, 2011, 41, 1278-1287.	2.9	73
36	Cytokine crosstalk for thymic medulla formation. Current Opinion in Immunology, 2011, 23, 190-197.	5.5	61

Τακές Νιττά

#	Article	IF	CITATIONS
37	Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. Journal of Experimental Medicine, 2011, 208, 383-394.	8.5	262
38	Thymoproteasome Shapes Immunocompetent Repertoire of CD8+ T Cells. Immunity, 2010, 32, 29-40.	14.3	172
39	Lymphotoxin Signals from Positively Selected Thymocytes Regulate the Terminal Differentiation of Medullary Thymic Epithelial Cells. Journal of Immunology, 2010, 185, 4769-4776.	0.8	127
40	Role of thymic cortex-specific self-peptides in positive selection of T cells. Seminars in Immunology, 2010, 22, 287-293.	5.6	48
41	CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17129-17133.	7.1	109
42	The Tumor Necrosis Factor Family Receptors RANK and CD40 Cooperatively Establish the Thymic Medullary Microenvironment and Self-Tolerance. Immunity, 2008, 29, 423-437.	14.3	434
43	The Cytokine RANKL Produced by Positively Selected Thymocytes Fosters Medullary Thymic Epithelial Cells that Express Autoimmune Regulator. Immunity, 2008, 29, 438-450.	14.3	375
44	Autoantigen-Specific Interactions with CD4+ Thymocytes Control Mature Medullary Thymic Epithelial Cell Cellularity. Immunity, 2008, 29, 451-463.	14.3	219
45	Chapter 3 Thymic Microenvironments for T-Cell Repertoire Formation. Advances in Immunology, 2008, 99, 59-94.	2.2	75
46	The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins. Trends in Immunology, 2007, 28, 58-65.	6.8	87
47	IAN Family Critically Regulates Survival and Development of T Lymphocytes. PLoS Biology, 2006, 4, e103.	5.6	109
48	Lack of cytotoxic property in a variant of Epstein–Barr virus latent membrane protein-1 isolated from nasopharyngeal carcinoma. Cellular Signalling, 2004, 16, 1071-1081.	3.6	13
49	NF-κB is required for cell death induction by latent membrane protein 1 of Epstein–Barr virus. Cellular Signalling, 2003, 15, 423-433.	3.6	14
50	Polyamine Depletion Induces Apoptosis through Mitochondria-Mediated Pathway. Experimental Cell Research, 2002, 276, 120-128.	2.6	56