James G Dowty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8321909/publications.pdf

Version: 2024-02-01

73 papers 5,588 citations

28 h-index 95266 68 g-index

74 all docs

74 docs citations

times ranked

74

8501 citing authors

#	Article	IF	CITATIONS
1	Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, The, 2013, 346, f2360-f2360.	6.0	1,523
2	The Clinical Phenotype of Lynch Syndrome Due to Germ-Line PMS2 Mutations. Gastroenterology, 2008, 135, 419-428.e1.	1.3	480
3	Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 404-412.	2.5	341
4	Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. Journal of the National Cancer Institute, 2010, 102, 193-201.	6.3	328
5	Pathology Features in Bethesda Guidelines Predict Colorectal Cancer Microsatellite Instability: A Population-Based Study. Gastroenterology, 2007, 133, 48-56.	1.3	302
6	Cancer Risks for <i>MLH 1 </i> and <i> MSH 2 </i> Mutation Carriers. Human Mutation, 2013, 34, 490-497.	2.5	201
7	Rare variants in the ATMgene and risk of breast cancer. Breast Cancer Research, 2011, 13, R73.	5.0	188
8	Risk of Colorectal Cancer for Carriers of Mutations in MUTYH, WithÂand Without a Family History of Cancer. Gastroenterology, 2014, 146, 1208-1211.e5.	1.3	180
9	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
10	Cancer Risks For Mismatch Repair Gene Mutation Carriers: A Population-Based Early Onset Case-Family Study. Clinical Gastroenterology and Hepatology, 2006, 4, 489-498.	4.4	151
11	Constitutional Methylation of the <i>BRCA1</i> Promoter Is Specifically Associated with <i>BRCA1</i> Mutation-Associated Pathology in Early-Onset Breast Cancer. Cancer Prevention Research, 2011, 4, 23-33.	1.5	147
12	Risk of extracolonic cancers for people with biallelic and monoallelic mutations in <i>MUTYH</i> International Journal of Cancer, 2016, 139, 1557-1563.	5.1	107
13	A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Research, 2010, 12, R109.	5.0	102
14	Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 359-365.	2.5	96
15	Cancer risks for monoallelic <i>MUTYH</i> mutation carriers with a family history of colorectal cancer. International Journal of Cancer, 2011, 129, 2256-2262.	5.1	93
16	Penetrance Analysis of the <i>PALB2</i> c.1592delT Founder Mutation. Clinical Cancer Research, 2008, 14, 4667-4671.	7.0	90
17	Heritable DNA methylation marks associated with susceptibility to breast cancer. Nature Communications, 2018, 9, 867.	12.8	76
18	Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective cohort study. Lancet Oncology, The, 2021, 22, 1014-1022.	10.7	58

#	Article	IF	CITATIONS
19	Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes. British Journal of Cancer, 2011, 105, 162-169.	6.4	50
20	Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Research, 2013, 15, R17.	5.0	42
21	Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening. Future Oncology, 2016, 12, 503-513.	2.4	42
22	Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. Journal of Medical Genetics, 2011, 48, 266-272.	3.2	41
23	Morphological predictors of BRCA1 germline mutations in young women with breast cancer. British Journal of Cancer, 2011, 104, 903-909.	6.4	40
24	Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut, 2015, 64, 101-110.	12.1	40
25	Short-Term Risk of Colorectal Cancer in Individuals With Lynch Syndrome: A Meta-Analysis. Journal of Clinical Oncology, 2015, 33, 326-331.	1.6	37
26	Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model. Breast Cancer Research and Treatment, 2013, 139, 887-896.	2.5	33
27	Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers?. European Journal of Cancer, 2013, 49, 1578-1587.	2.8	31
28	Genomeâ€Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Caseâ€Control Study. Prostate, 2017, 77, 471-478.	2.3	31
29	Population-Based Estimate of Prostate Cancer Risk for Carriers of the HOXB13 Missense Mutation G84E. PLoS ONE, 2013, 8, e54727.	2.5	31
30	The CRISP colorectal cancer risk prediction tool: an exploratory study using simulated consultations in Australian primary care. BMC Medical Informatics and Decision Making, 2017, 17, 13.	3.0	28
31	Criteria and prediction models for mismatch repair gene mutations: a review. Journal of Medical Genetics, 2013, 50, 785-793.	3.2	27
32	Cohort Profile: The Tasmanian Longitudinal Health STUDY (TAHS). International Journal of Epidemiology, 2017, 46, dyw028.	1.9	26
33	Genome-wide DNA methylation assessment of â€~BRCA1-like' early-onset breast cancer: Data from the Australian Breast Cancer Family Registry. Experimental and Molecular Pathology, 2018, 105, 404-410.	2.1	26
34	A New Comprehensive Colorectal Cancer Risk Prediction Model Incorporating Family History, Personal Characteristics, and Environmental Factors. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 549-557.	2.5	25
35	Mammographic density defined by higher than conventional brightness thresholds better predicts breast cancer risk. International Journal of Epidemiology, 2017, 46, dyw212.	1.9	24
36	Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features. JNCI Cancer Spectrum, 2018, 2, pky057.	2.9	24

#	Article	IF	CITATIONS
37	Body Mass Index in Early Adulthood and Endometrial Cancer Risk for Mismatch Repair Gene Mutation Carriers. Obstetrics and Gynecology, 2011, 117, 899-905.	2.4	23
38	Reproductive factors as risk modifiers of breast cancer in <i>BRCA</i> mutation carriers and high-risk non-carriers. Oncotarget, 2017, 8, 102110-102118.	1.8	23
39	Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Familial Cancer, 2019, 18, 389-397.	1.9	23
40	Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk. Journal of Clinical Medicine, 2020, 9, 627.	2.4	23
41	Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of LAMBDA, BRCAPRO, Myriad II, and modified Couch models. Familial Cancer, 2007, 6, 473-482.	1.9	21
42	Molecular screening of all colorectal tumors diagnosed before age 50 years followed by genetic testing efficiently identifies Lynch syndrome cases. International Journal of Cancer, 2009, 124, x-i.	5.1	18
43	Breast cancer risk for Korean women with germline mutations in BRCA1 and BRCA2. Breast Cancer Research and Treatment, 2015, 152, 659-665.	2.5	18
44	Novel mammogramâ€based measures improve breast cancer risk prediction beyond an established mammographic density measure. International Journal of Cancer, 2021, 148, 2193-2202.	5.1	18
45	VTRNA2-1: Genetic Variation, Heritable Methylation and Disease Association. International Journal of Molecular Sciences, 2021, 22, 2535.	4.1	15
46	Mortality after breast cancer as a function of time since diagnosis by estrogen receptor status and age at diagnosis. International Journal of Cancer, 2019, 145, 3207-3217.	5.1	14
47	Lynch syndrome and cervical cancer. International Journal of Cancer, 2015, 137, 2757-2761.	5.1	13
48	The use of a risk assessment and decision support tool (CRISP) compared with usual care in general practice to increase risk-stratified colorectal cancer screening: study protocol for a randomised controlled trial. Trials, 2018, 19, 397.	1.6	13
49	Publication Policy or Publication Bias?. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1363-1363.	2.5	12
50	Validation study of the <scp>lambda</scp> model for predicting the <i>BRCA1</i> or <i>BRCA2</i> mutation carrier status of North American Ashkenazi Jewish women. Clinical Genetics, 2007, 72, 87-97.	2.0	12
51	A Genomic Test for Colorectal Cancer Risk: Is This Acceptable and Feasible in Primary Care?. Public Health Genomics, 2020, 23, 110-121.	1.0	12
52	Rare Germline Pathogenic Variants Identified by Multigene Panel Testing and the Risk of Aggressive Prostate Cancer. Cancers, 2021, 13, 1495.	3.7	12
53	Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Familial Cancer, 2015, 14, 575-583.	1.9	11
54	Population-based estimates of breast cancer risk for carriers of pathogenic variants identified by gene-panel testing. Npj Breast Cancer, 2021, 7, 153.	5.2	10

#	Article	IF	Citations
55	The RAD51D E233G variant and breast cancer risk: population-based and clinic-based family studies of Australian women. Breast Cancer Research and Treatment, 2008, 112, 35-39.	2.5	9
56	Dependence of colorectal cancer risk on the parent-of-origin of mutations in DNA mismatch repair genes. Human Mutation, 2011, 32, 207-212.	2.5	9
57	Using tumour pathology to identify people at high genetic risk of breast and colorectal cancers. Pathology, 2012, 44, 89-98.	0.6	7
58	Chentsov's theorem for exponential families. Information Geometry, 2018, 1, 117-135.	1.2	6
59	Familial Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 1483.	3.7	6
60	The Impact of a Comprehensive Risk Prediction Model for Colorectal Cancer on a Population Screening Program. JNCI Cancer Spectrum, 2020, 4, pkaa062.	2.9	5
61	Population-Based Estimates of the Age-Specific Cumulative Risk of Breast Cancer for Pathogenic Variants in CHEK2: Findings from the Australian Breast Cancer Family Registry. Cancers, 2021, 13, 1378.	3.7	5
62	Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 2767.	3.7	5
63	Population-based estimates of age-specific cumulative risk of breast cancer for pathogenic variants in ATM. Breast Cancer Research, 2022, 24, 24.	5.0	3
64	The time-evolution of DCIS size distributions with applications to breast cancer growth and progression. Mathematical Medicine and Biology, 2014, 31, 353-364.	1.2	2
65	Repeatability of methylation measures using a QIAseq targeted methyl panel and comparison with the Illumina HumanMethylation450 assay. BMC Research Notes, 2021, 14, 394.	1.4	2
66	Towards more effective and equitable genetic testing for BRCA1 and BRCA2 mutation carriers. Journal of Medical Genetics, 2008, 45, 409-410.	3.2	1
67	Letter in response to "ldentifying Lynch syndrome―by de la Chapelle et al International Journal of Cancer, 2010, 126, 2757-2758.	5.1	1
68	Do the risks of Lynch syndrome-related cancers depend on the parent of origin of the mutation?. Familial Cancer, 2020, 19, 215-222.	1.9	1
69	910Maternal adversity and cardiovascular health of the offspring. International Journal of Epidemiology, 2021, 50, .	1.9	0
70	915Inference on Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses (ICE CRISTAL). International Journal of Epidemiology, 2021, 50, .	1.9	0
71	888Discriminating between risk discriminators: OPERA, AUC, and polygenic variance. International Journal of Epidemiology, 2021, 50, .	1.9	0
72	32Do the risks of Lynch syndrome-related cancers depend on the parent-of-origin of the mutation?. International Journal of Epidemiology, 2021, 50, .	1.9	0

#	Article	IF	CITATIONS
73	Association between maternal adversity, DNA methylation, and cardiovascular health of offspring: a longitudinal analysis of the ALSPAC cohort study. BMJ Open, 2022, 12, e053652.	1.9	O