
Leon Lefferts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319235/publications.pdf Version: 2024-02-01

LEON LEFEPTS

#	Article	IF	CITATIONS
1	Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths. Catalysis Today, 2022, 383, 205-215.	4.4	13
2	Improving the Energy Yield of Plasma-Based Ammonia Synthesis with In Situ Adsorption. ACS Sustainable Chemistry and Engineering, 2022, 10, 1994-2000.	6.7	27
3	<i>Inâ€situ</i> ATRâ€IR Spectroscopy Reveals Complex Absorptionâ€Diffusion Dynamics in Model Polymerâ€Membraneâ€Catalyst Assemblies (PCMA). ChemCatChem, 2022, 14, .	3.7	3
4	1921–2021: A Century of Renewable Ammonia Synthesis. Sustainable Chemistry, 2022, 3, 149-171.	4.7	24
5	Technoeconomic Evaluation of the Industrial Implementation of Catalytic Direct Nonoxidative Methane Coupling. Industrial & Engineering Chemistry Research, 2022, 61, 566-579.	3.7	5
6	Proton shuttling flattens the energy landscape of nitrite catalytic reduction. Journal of Catalysis, 2022, 413, 252-263.	6.2	6
7	Catalyst-assisted DBD plasma for coupling of methane: Minimizing carbon-deposits by structured reactors. Catalysis Today, 2021, 369, 210-220.	4.4	18
8	Effect of oxygen on formic acid decomposition over Pd catalyst. Journal of Catalysis, 2021, 394, 342-352.	6.2	17
9	Influence of Axial Temperature Profiles on Fe/SiO 2 Catalyzed Nonâ€oxidative Coupling of Methane. ChemCatChem, 2021, 13, 1157-1160.	3.7	9
10	Minimizing carbon deposition in plasma-induced methane coupling with structured hydrogenation catalysts. Journal of Energy Chemistry, 2021, 58, 271-279.	12.9	8
11	From the Birkeland–Eyde process towards energy-efficient plasma-based NO _X synthesis: a techno-economic analysis. Energy and Environmental Science, 2021, 14, 2520-2534.	30.8	96
12	Effect of ethane and ethylene on catalytic non oxidative coupling of methane. Reaction Chemistry and Engineering, 2021, 6, 2425-2433.	3.7	9
13	Beyond Haber-Bosch: The renaissance of the Claude process. International Journal of Hydrogen Energy, 2021, 46, 21566-21579.	7.1	37
14	On the mechanism for the plasma-activated N ₂ dissociation on Ru surfaces. Journal Physics D: Applied Physics, 2021, 54, 393002.	2.8	16
15	N-isopropylacrylamide polymer brushes alter the micro-solvation environment during aqueous nitrite hydrogenation on Pd/Al2O3 catalyst. Journal of Catalysis, 2021, 402, 114-124.	6.2	7
16	Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in non-thermal plasma. Catalysis Science and Technology, 2021, 11, 2834-2843.	4.1	36
17	Synergy between dielectric barrier discharge plasma and calcium oxide for reverse water gas shift. Chemical Engineering Journal, 2020, 392, 123806.	12.7	12
18	Feasibility Study of Plasma-Catalytic Ammonia Synthesis for Energy Storage Applications. Catalysts, 2020, 10, 999.	3.5	28

#	Article	IF	CITATIONS
19	Recycling Strategy for Bioaqueous Phase via Catalytic Wet Air Oxidation to Biobased Acetic Acid Solution. ACS Sustainable Chemistry and Engineering, 2020, 8, 14694-14699.	6.7	7
20	Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green Chemistry, 2020, 22, 6258-6287.	9.0	163
21	Mechanism of nitrite hydrogenation over Pd/l³-Al2O3 according a rigorous kinetic study. Journal of Catalysis, 2020, 383, 124-134.	6.2	26
22	Enhanced transport in Gas-Liquid-Solid catalytic reaction by structured wetting properties: Nitrite hydrogenation. Chemical Engineering and Processing: Process Intensification, 2020, 148, 107802.	3.6	6
23	Promoting Li/MgO Catalyst with Molybdenum Oxide for Oxidative Conversion of n-Hexane. Catalysts, 2020, 10, 354.	3.5	8
24	The 2020 plasma catalysis roadmap. Journal Physics D: Applied Physics, 2020, 53, 443001.	2.8	362
25	Influence of the Catalyst Particle Size on the Aqueous Phase Reforming of n-Butanol Over Rh/ZrO2. Frontiers in Chemistry, 2020, 8, 17.	3.6	16
26	Vibrationally Excited Activation of N ₂ in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 17515-17522.	6.7	96
27	Plasma Catalysis: Distinguishing between Thermal and Chemical Effects. Catalysts, 2019, 9, 185.	3.5	21
28	Catalytic Performance of Ni/CeO2/X-ZrO2 (X = Ca, Y) Catalysts in the Aqueous-Phase Reforming of Methanol. Nanomaterials, 2019, 9, 1582.	4.1	34
29	Initiation of Carbon Nanofiber Growth on Polycrystalline Nickel Foam under Low Ethylene Pressure. ChemCatChem, 2018, 10, 3107-3114.	3.7	5
30	In situ ATR-IR studies in aqueous phase reforming of hydroxyacetone on Pt/ZrO2 and Pt/AlO(OH) catalysts: The role of aldol condensation. Applied Catalysis B: Environmental, 2018, 232, 454-463.	20.2	27
31	Catalytic Oxidative Cracking of Light Alkanes to Alkenes. European Journal of Inorganic Chemistry, 2018, 2018, 1956-1968.	2.0	14
32	Egg-shell membrane reactors for nitrite hydrogenation: Manipulating kinetics and selectivity. Applied Catalysis B: Environmental, 2018, 224, 276-282.	20.2	17
33	Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation. Journal of Catalysis, 2018, 367, 171-180.	6.2	146
34	Bubble formation in catalyst pores; curse or blessing?. Reaction Chemistry and Engineering, 2018, 3, 826-833.	3.7	8
35	Nonâ€oxidative methane coupling to C ₂ hydrocarbons in a microwave plasma reactor. Plasma Processes and Polymers, 2018, 15, 1800087.	3.0	25
36	Competitive Adsorption of Nitrite and Hydrogen on Palladium during Nitrite Hydrogenation. ChemCatChem, 2018, 10, 3770-3776.	3.7	17

#	Article	IF	CITATIONS
37	ATR-IR spectroscopic cell for in situ studies at solid-liquid interface at elevated temperatures and pressures. Catalysis Today, 2017, 283, 185-194.	4.4	14
38	Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization. Catalysis Today, 2017, 297, 308-315.	4.4	26
39	Adsorption and Activation of Water on Cuboctahedral Rhodium and Platinum Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4324-4331.	3.1	20
40	Heterogeneous Catalysis. , 2017, , 15-71.		0
41	Ni in CNFs: Highly Active for Nitrite Hydrogenation. ACS Catalysis, 2016, 6, 5432-5440.	11.2	21
42	Carbon nano-fiber based membrane reactor for selective nitrite hydrogenation. Catalysis Today, 2016, 273, 50-61.	4.4	13
43	Effects of Morphology of Cerium Oxide Catalysts for Reverse Water Gas Shift Reaction. Catalysis Letters, 2016, 146, 770-777.	2.6	66
44	Adsorbed species on Pd catalyst during nitrite hydrogenation approaching complete conversion. Journal of Catalysis, 2016, 337, 102-110.	6.2	26
45	Steam reforming of n -butanol over Rh/ZrO 2 catalyst: role of 1-butene and butyraldehyde. Applied Catalysis B: Environmental, 2016, 182, 33-46.	20.2	34
46	Study on the catalytic conversion of lignin-derived components in pyrolysis vapour using model component. Catalysis Today, 2016, 259, 381-387.	4.4	10
47	Catalytic Conversion of Biomass Pyrolysis Vapours over Sodiumâ€Based Catalyst: A Study on the State of Sodium on the Catalyst. ChemCatChem, 2015, 7, 1833-1840.	3.7	31
48	Aliphatic Hydrocarbons from Lignocellulose by Pyrolysis over Cesiumâ€Modified Amorphous Silica Alumina Catalysts. ChemCatChem, 2015, 7, 3386-3396.	3.7	12
49	Investigation of Ce–Zr Oxide‣upported Ni Catalysts in the Steam Reforming of <i>meta</i> resol as a Model Component for Bioâ€Đerived Tar. ChemCatChem, 2015, 7, 468-478.	3.7	21
50	Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catalysis Science and Technology, 2015, 5, 3473-3490.	4.1	130
51	Influence of internal diffusion on selective hydrogenation of 4-carboxybenzaldehyde over palladium catalysts supported on carbon nanofiber coated monolith. Applied Catalysis A: General, 2015, 498, 222-229.	4.3	15
52	The effects of morphology of cerium oxide catalysts for dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 505, 354-364.	4.3	30
53	An in situ ATR-IR spectroscopy study of aluminas under aqueous phase reforming conditions. Physical Chemistry Chemical Physics, 2015, 17, 23795-23804.	2.8	46
54	Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chemistry, 2015, 17, 959-972.	9.0	153

#	Article	IF	CITATIONS
55	Steam- and autothermal-reforming of n-butanol over Rh/ZrO2 catalyst. Catalysis Today, 2015, 244, 47-57.	4.4	34
56	Steam reforming of acetic acid – A major component in the volatiles formed during gasification of humin. Applied Catalysis B: Environmental, 2015, 163, 74-82.	20.2	46
57	Water and carbon oxides on monoclinic zirconia: experimental and computational insights. Physical Chemistry Chemical Physics, 2014, 16, 20650-20664.	2.8	55
58	Ru decorated carbon nanotubes – a promising catalyst for reforming bio-based acetic acid in the aqueous phase. Green Chemistry, 2014, 16, 864.	9.0	48
59	Partially hydrophobized catalyst particles for aqueous nitrite hydrogenation. Applied Catalysis B: Environmental, 2014, 156-157, 166-172.	20.2	10
60	Supported Pd Catalysts Prepared via Colloidal Method: The Effect of Acids. ACS Catalysis, 2013, 3, 2341-2352.	11.2	43
61	Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers. Thin Solid Films, 2013, 534, 341-347.	1.8	5
62	Valorization of Huminâ€Based Byproducts from Biomass Processing—A Route to Sustainable Hydrogen. ChemSusChem, 2013, 6, 1651-1658.	6.8	86
63	Exposed Surfaces on Shapeâ€Controlled Ceria Nanoparticles Revealed through ACâ€TEM and Water–Gas Shift Reactivity. ChemSusChem, 2013, 6, 1898-1906.	6.8	134
64	Ceria Nanocatalysts: Shape Dependent Reactivity and Formation of OH. ChemCatChem, 2013, 5, 479-489.	3.7	76
65	Stable and Efficient Pt–Re/TiO ₂ catalysts for Waterâ€Gasâ€Shift: On the Effect of Rhenium. ChemCatChem, 2013, 5, 557-564.	3.7	26
66	Molecular level insights to the interaction of toluene with ZrO2-based biomass gasification gas clean-up catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 769-779.	20.2	10
67	The influence of over-stoichiometry in La2Ni0.9V0.1O4.15+δ on selective oxidative dehydrogenation of propane. Catalysis Today, 2013, 203, 17-23.	4.4	4
68	Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass and Bioenergy, 2013, 48, 100-110.	5.7	110
69	Towards Stable Catalysts for Aqueous Phase Conversion of Ethylene Glycol for Renewable Hydrogen. ChemSusChem, 2013, 6, 1717-1723.	6.8	43
70	Building microscopic soccer balls with evaporating colloidal fakir drops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16455-16458.	7.1	113
71	Aqueous Phase Reforming of ethylene glycol – Role of intermediates in catalyst performance. Journal of Catalysis, 2012, 292, 239-245.	6.2	77
72	Carbon Nanotubes: A Promising Catalyst Support Material for Supercritical Water Gasification of Biomass Waste. ChemCatChem, 2012, 4, 2068-2074.	3.7	36

#	Article	IF	CITATIONS
73	Carbon nanotube/carbon nanofiber growth from industrial by-product gases on low- and high-alloy steels. Carbon, 2012, 50, 4722-4731.	10.3	25
74	Influence of reaction parameters on the attachment of a carbon nanofiber layer on Ni foils. Surface and Coatings Technology, 2012, 206, 3366-3373.	4.8	3
75	Production of C ₃ /C ₄ Olefins from <i>n</i> -Hexane: Conceptual Design of a Catalytic Oxidative Cracking Process and Comparison to Steam Cracking. Industrial & Engineering Chemistry Research, 2011, 50, 342-351.	3.7	16
76	Effect of pH on the Nitrite Hydrogenation Mechanism over Pd/Al ₂ O ₃ and Pt/Al ₂ O ₃ : Details Obtained with ATR-IR Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 1186-1194.	3.1	40
77	How water droplets evaporate on a superhydrophobic substrate. Physical Review E, 2011, 83, 026306.	2.1	159
78	Tailoring of free standing microchannels structures via microtemplating. Materials Research Bulletin, 2011, 46, 505-511.	5.2	3
79	Oxidative Conversion of Hexane to Olefins-Influence of Plasma and Catalyst on Reaction Pathways. Plasma Chemistry and Plasma Processing, 2011, 31, 291-306.	2.4	8
80	Steam reforming of phenol over Ni-based catalysts – A comparative study. Applied Catalysis B: Environmental, 2011, 106, 280-286.	20.2	71
81	Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part II: Catalytic reduction of bromate contaminants in aqueous phase. Applied Catalysis B: Environmental, 2011, 102, 243-250.	20.2	41
82	Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 2011, 35, 3199-3207.	5.7	263
83	Selection of mixed conducting oxides for oxidative dehydrogenation of propane with pulse experiments. Applied Catalysis A: General, 2011, 391, 70-77.	4.3	7
84	Challenges in the production of sustainable fuels from pyrolysis oil – Design of efficient catalysts for gasification of char. Applied Catalysis B: Environmental, 2011, 101, 587-597.	20.2	13
85	Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors, Part I: Preparation and characterization. Applied Catalysis B: Environmental, 2011, 102, 232-242.	20.2	21
86	Publisher's Note: How water droplets evaporate on a superhydrophobic substrate [Phys. Rev. E83, 026306 (2011)]. Physical Review E, 2011, 83, .	2.1	1
87	Evaporation of pyrolysis oil: Product distribution and residue char analysis. AICHE Journal, 2010, 56, 2200-2210.	3.6	7
88	Effect of V in La2NixV1â^'xO4+δ on selective oxidative dehydrogenation of propane. Applied Catalysis A: General, 2010, 378, 144-150.	4.3	12
89	The effect of V in La2Ni1â^'xVxO4+1.5x+δ on selective oxidative dehydrogenation of propane: Stabilization of lattice oxygen. Applied Catalysis A: General, 2010, 385, 14-21.	4.3	8
90	Ceramic microfluidic monoliths by ice templating. Microporous and Mesoporous Materials, 2010, 134, 216-219.	4.4	25

#	Article	IF	CITATIONS
91	Catalytic oxidative cracking of hexane as a route to olefins. Applied Catalysis A: General, 2010, 372, 167-174.	4.3	42
92	Thin layer of carbon-nano-fibers (CNFs) as catalyst support for fast mass transfer in hydrogenation of nitrite. Applied Catalysis A: General, 2010, 383, 24-32.	4.3	53
93	In situ CVD of carbon nanofibers in a microreactor. Catalysis Today, 2010, 150, 128-132.	4.4	13
94	Catalytic oxidative cracking as a route to olefins: Oxidative conversion of hexane over MoO3-Li/MgO. Catalysis Today, 2010, 157, 345-350.	4.4	18
95	Pathway Study on Dielectric Barrier Discharge Plasma Conversion of Hexane. Journal of Physical Chemistry C, 2010, 114, 18903-18910.	3.1	10
96	Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chemical Society Reviews, 2010, 39, 4643.	38.1	267
97	Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers. Surface and Coatings Technology, 2009, 203, 3435-3441.	4.8	28
98	Lithium ions incorporation in MgO for oxidative dehydrogenation/cracking of propane: Active site characterization and mechanism of regeneration. Catalysis Today, 2009, 145, 19-26.	4.4	14
99	The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane. Applied Catalysis A: General, 2009, 362, 88-94.	4.3	5
100	Sustainable route to hydrogen – Design of stable catalysts for the steam gasification of biomass related oxygenates. Applied Catalysis B: Environmental, 2009, 88, 59-65.	20.2	49
101	Design of a stable steam reforming catalyst—A promising route to sustainable hydrogen from biomass oxygenates. Applied Catalysis B: Environmental, 2009, 90, 38-44.	20.2	72
102	Mechanistic Investigation of the Heterogeneous Hydrogenation of Nitrite over Pt/Al2O3 by Attenuated Total Reflection Infrared Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 2503-2511.	3.1	28
103	Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir, 2009, 25, 12293-12298.	3.5	279
104	The influence of water and pH on adsorption and oxidation of CO on Pd/Al ₂ O ₃ —an investigation by attenuated total reflection infrared spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 641-649.	2.8	48
105	Catalyst Activation by Microplasma for Carbon Nanofiber Synthesis in a Microreactor. IEEE Transactions on Plasma Science, 2009, 37, 985-992.	1.3	15
106	Mechanistic Aspects of Catalytic Steam Reforming of Biomass-related Oxygenates. Topics in Catalysis, 2008, 49, 68-72.	2.8	19
107	Reduction of NO ₂ in Flue Gas by CO and Propylene over CuO eO ₂ /SiO ₂ in the Presence of O ₂ . Chinese Journal of Chemistry, 2008, 26, 1035-1040.	4.9	6
108	Alkane Activation at Ambient Temperatures: Unusual Selectivities, CC, CH Bond Scission versus CC Bond Coupling. ChemPhysChem, 2008, 9, 533-537.	2.1	16

#	Article	IF	CITATIONS
109	Influence of potassium on the competition between methane and ethane in steam reforming over Pt supported on yttrium-stabilized zirconia. Applied Catalysis A: General, 2008, 346, 90-95.	4.3	14
110	How Carbon-Nano-Fibers attach to Ni foam. Carbon, 2008, 46, 1638-1647.	10.3	60
111	Single stage water gas shift conversion over Pt/TiO2—Problem of catalyst deactivation. Applied Catalysis A: General, 2008, 338, 66-71.	4.3	40
112	Frozen slurry catalytic reactor: A new structured catalyst for transient studies in liquid phase. Applied Catalysis A: General, 2008, 351, 159-165.	4.3	10
113	Role of Re in Pt–Re/TiO2 catalyst for water gas shift reaction: A mechanistic and kinetic study. Applied Catalysis B: Environmental, 2008, 80, 129-140.	20.2	73
114	Steam reforming of biomass based oxygenates—Mechanism of acetic acid activation on supported platinum catalysts. Journal of Catalysis, 2008, 257, 229-231.	6.2	28
115	Development of a transient response technique for heterogeneous catalysis in the liquid phase, Part 1: Applying an electrospray ionization mass spectrometry (ESI-MS) detector. Journal of Catalysis, 2008, 257, 244-254.	6.2	5
116	Development of a transient response technique for heterogeneous catalysis in liquid phase, Part 2: Applying membrane inlet mass spectrometry (MIMS) for detection of dissolved gasses. Journal of Catalysis, 2008, 257, 255-261.	6.2	4
117	In Situ Attenuated Total Reflection Infrared (ATR-IR) Study of the Adsorption of NO ₂ ⁻ , NH ₂ OH, and NH ₄ ⁺ on Pd/Al ₂ O ₃ and Pt/Al ₂ O ₃ . Langmuir, 2008, 24, 869-879.	3.5	32
118	Oxidative Conversion of Propane in a Microreactor in the Presence of Plasma over MgO-Based Catalysts:  An Experimental Study. Journal of Physical Chemistry C, 2008, 112, 4267-4274.	3.1	17
119	Presence of Lithium Ions in MgO Lattice: Surface Characterization by Infrared Spectroscopy and Reactivity towards Oxidative Conversion of Propane. Langmuir, 2008, 24, 8220-8228.	3.5	27
120	On-chip microplasma reactors using carbon nanofibres and tungsten oxide nanowires as electrodes. Journal Physics D: Applied Physics, 2008, 41, 194009.	2.8	14
121	A bifunctional catalyst for the single-stage water–gas shift reaction in fuel cell applications. Part 2. Roles of the support and promoter on catalyst activity and stability. Journal of Catalysis, 2007, 251, 163-171.	6.2	119
122	Preparation and Application of Carbon-Nanofiber Based Microstructured Materials as Catalyst Supports. Industrial & Engineering Chemistry Research, 2007, 46, 3968-3978.	3.7	133
123	Influence of NO on the Reduction of NO2 with CO over Pt/SiO2 in the Presence of O2. Chinese Journal of Chemistry, 2007, 25, 435-438.	4.9	9
124	Comparative study of steam reforming of methane, ethane and ethylene on Pt, Rh and Pd supported on yttrium-stabilized zirconia. Applied Catalysis A: General, 2007, 332, 310-317.	4.3	52
125	Bifunctional catalysts for single-stage water–gas shift reaction in fuel cell applications.Part 1. Effect of the support on the reaction sequence. Journal of Catalysis, 2007, 251, 153-162.	6.2	157
126	In situ ATR-IR study of CO adsorption and oxidation over Pt/Al2O3 in gas and aqueous phase: Promotion effects by water and pH. Journal of Catalysis, 2007, 246, 66-73.	6.2	76

#	Article	IF	CITATIONS
127	Interplay of Bonding and Geometry of the Adsorption Complexes of Light Alkanes within Cationic Faujasites. Combined Spectroscopic and Computational Study. Journal of Physical Chemistry B, 2006, 110, 22618-22627.	2.6	48
128	Steam reforming of acetic acid as a biomass derived oxygenate: Bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts. Journal of Catalysis, 2006, 243, 263-269.	6.2	152
129	CO Adsorption and Oxidation at the Catalystâ^'Water Interface:  An Investigation by Attenuated Total Reflection Infrared Spectroscopy. Langmuir, 2006, 22, 1079-1085.	3.5	43
130	Pt/SiO2 catalyst preparation: high platinum dispersions by using low-temperature treatments. Studies in Surface Science and Catalysis, 2006, 162, 529-536.	1.5	2
131	Partial oxidation of methane by O2 and N2O to syngas over yttrium-stabilized ZrO2. Catalysis Today, 2006, 112, 82-85.	4.4	30
132	Preparation of well-dispersed Pt/SiO2 catalysts using low-temperature treatments. Applied Catalysis A: General, 2006, 301, 51-58.	4.3	53
133	Formation of high surface area Li/MgO—Efficient catalyst for the oxidative dehydrogenation/cracking of propane. Applied Catalysis A: General, 2006, 310, 105-113.	4.3	50
134	Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2. Chemical Engineering Journal, 2006, 120, 133-137.	12.7	148
135	Effect of zeolite geometry for propane selective oxidation on cation electrostatic field of Ca2+ exchanged zeolites. Microporous and Mesoporous Materials, 2006, 91, 187-195.	4.4	10
136	Preparation of Thin Porous Silica Foam on Alumina Disk Substrate. Catalysis Letters, 2006, 106, 49-53.	2.6	0
137	Mechanistic aspects of the formation of carbon-nanofibers on the surface of Ni foam: A new microstructured catalyst support. Journal of Catalysis, 2006, 239, 460-469.	6.2	81
138	Non-conventional oxidation catalysis. Catalysis Today, 2005, 100, 63-69.	4.4	30
139	Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas. Journal of Catalysis, 2005, 230, 291-300.	6.2	55
140	Effects of BrÃ,nsted acidity in the mechanism of selective oxidation of propane to acetone on CaY zeolite at room temperature. Journal of Catalysis, 2005, 232, 411-423.	6.2	7
141	Activation of O2 and CH4 on yttrium-stabilized zirconia for the partial oxidation of methane to synthesis gas. Journal of Catalysis, 2005, 233, 434-441.	6.2	102
142	Nature of nitrogen specie in coke and their role in NOx formation during FCC catalyst regeneration. Applied Catalysis B: Environmental, 2005, 59, 205-211.	20.2	40
143	Non-Conventional Oxidation Catalysis. ChemInform, 2005, 36, no.	0.0	0
144	Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: A new structured catalyst support. Journal of Materials Chemistry, 2005, 15, 1946.	6.7	85

#	Article	IF	CITATIONS
145	Role of Surface Defects in Activation of O2and N2O on ZrO2and Yttrium-Stabilized ZrO2. Journal of Physical Chemistry B, 2005, 109, 9550-9555.	2.6	42
146	Formation of M2+(O2)(C3H8) Species in Alkaline-Earth-Exchanged Y Zeolite during Propane Selective Oxidation. Journal of Physical Chemistry B, 2005, 109, 18361-18368.	2.6	16
147	Sustainable hydrogen from bio-oil—Steam reforming of acetic acid as a model oxygenate. Journal of Catalysis, 2004, 227, 101-108.	6.2	268
148	Selective removal of NO2 in the presence of oxygen and NO over Pd/SiO2 catalysts. Applied Catalysis B: Environmental, 2004, 50, 143-151.	20.2	12
149	Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia. Journal of Catalysis, 2004, 225, 388-397.	6.2	63
150	Desorption of Acetone from Alkaline-Earth Exchanged Y Zeolite after Propane Selective Oxidation. Journal of Physical Chemistry B, 2004, 108, 218-223.	2.6	12
151	Growing a carbon nano-fiber layer on a monolith support; effect of nickel loading and growth conditions. Journal of Materials Chemistry, 2004, 14, 1590.	6.7	58
152	Effect of Ca2+Position in Zeolite Y on Selective Oxidation of Propane at Room Temperature. Journal of Physical Chemistry B, 2004, 108, 15728-15734.	2.6	18
153	Comparison of Ag/Al2O3 and Ag-ZSM5 catalysts for the selective reduction of NO with propylene in the presence of oxygen. Applied Catalysis B: Environmental, 2003, 42, 25-34.	20.2	24
154	Oxidative conversion of propane over lithium-promoted magnesia catalyst I. Kinetics and mechanism. Journal of Catalysis, 2003, 218, 296-306.	6.2	94
155	Oxidative conversion of propane over lithium-promoted magnesia catalyst II. Active site characterization and hydrocarbon activation. Journal of Catalysis, 2003, 218, 307-314.	6.2	50
156	Selective catalytic reduction of NOx with propylene in the presence of oxygen over Co–Pt promoted H-MFI and HY. Catalysis Today, 2003, 84, 139-147.	4.4	8
157	Propane selective oxidation on alkaline earth exchanged zeolite Y: room temperature in situ IR study. Physical Chemistry Chemical Physics, 2003, 5, 4407.	2.8	19
158	Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Applied Catalysis B: Environmental, 2002, 37, 205-216.	20.2	90
159	Selective reduction of NO with propylene in the presence of oxygen over Co- and Pt-Co promoted HY. Applied Catalysis B: Environmental, 2002, 39, 233-246.	20.2	15
160	Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts. Applied Catalysis A: General, 2002, 227, 287-297.	4.3	45
161	lsomerization of Linear Butenes to iso-Butene over Medium Pore Zeolites. Journal of Catalysis, 2001, 197, 68-80.	6.2	40
162	Applied Molecular Simulations over FER-, TON-, and AEL-Type Zeolites. Journal of Catalysis, 2001, 203, 351-361.	6.2	26

#	Article	IF	CITATIONS
163	The importance of acid site locations for n-butene skeletal isomerization on ferrierite. Journal of Molecular Catalysis A, 2000, 162, 147-157.	4.8	51
164	The influence of water on the oxygen–silver interaction and on the oxidative dehydrogenation of methanol. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 1491.	1.0	8
165	An X-ray photoelectron spectroscopy study of the influence of hydrogen on the oxygen–silver interaction. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3161.	1.0	6
166	Formic acid generating in-situ H2 and CO2 for nitrite reduction in aqueous phase. Catalysis Science and Technology, 0, , .	4.1	0