
Andrey A Shoshin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319224/publications.pdf Version: 2024-02-01

ANDREV & SHOSHIN

#	Article	IF	CITATIONS
1	Integration of ITER diagnostic ports at the Budker institute. Fusion Engineering and Design, 2022, 178, 113114.	1.9	3
2	Department of Plasma Physics of the Physics Department at Novosibirsk State University. Siberian Journal of Physics, 2022, 17, 118-141.	0.3	0
3	The Thermal Outgassing Rate of Materials Used in High-Vacuum Systems. Instruments and Experimental Techniques, 2022, 65, 519-523.	0.5	1
4	In-situ study of the processes of damage to the tungsten surface under transient heat loads possible in ITER. Journal of Nuclear Materials, 2021, 544, 152669.	2.7	8
5	Test results of boron carbide ceramics for ITER port protection. Fusion Engineering and Design, 2021, 168, 112426.	1.9	6
6	Qualification of Boron Carbide Ceramics for Use in ITER Ports. IEEE Transactions on Plasma Science, 2020, 48, 1474-1478.	1.3	16
7	Preliminary Design of DSMs for ITER Upper Ports #02 and #08 Integration. IEEE Transactions on Plasma Science, 2020, 48, 1721-1725.	1.3	4
8	Engineering Calculations and Preparation for Manufacturing of ITER Equatorial Port #11. IEEE Transactions on Plasma Science, 2020, 48, 1631-1636.	1.3	7
9	Dynamic observation of X-ray Laue diffraction on single-crystal tungsten during pulsed heat load. Journal of Synchrotron Radiation, 2019, 26, 1644-1649.	2.4	7
10	Properties of boron carbide ceramics made by various methods for use in ITER. Fusion Engineering and Design, 2019, 146, 2007-2010.	1.9	10
11	Continuous laser illumination for in situ investigation of tungsten erosion under transient thermal loads. Fusion Engineering and Design, 2019, 146, 2366-2370.	1.9	4
12	Diagnostics of the dynamics of material damage by thermal shocks with the intensity possible in the ITER divertor. Physica Scripta, 2018, 93, 035602.	2.5	13
13	Numerical model of high-power transient heating of tungsten with considering of various erosion effects. Journal of Physics: Conference Series, 2018, 1103, 012001.	0.4	1
14	Shape evolution of surface molten by electron beam during cooling stage. Fusion Engineering and Design, 2018, 128, 154-157.	1.9	1
15	Study of plasma-surface interaction at the GOL-3 facility. Fusion Engineering and Design, 2017, 114, 157-179.	1.9	9
16	In-situ imaging of tungsten surface modification under ITER-like transient heat loads. Nuclear Materials and Energy, 2017, 12, 553-558.	1.3	16
17	Observation of dust particles ejected from the tungsten surface by transient heat flux with small-angle scattering of cw laser light. Nuclear Materials and Energy, 2017, 12, 494-498.	1.3	6
18	Calculation of heat sink around cracks formed under pulsed heat load. Journal of Physics: Conference Series, 2017, 894, 012120.	0.4	2

ANDREY A SHOSHIN

#	Article	IF	CITATIONS
19	Heating of tungsten target by intense pulse electron beam. AIP Conference Proceedings, 2016, , .	0.4	17
20	Status of Dynamic Diagnostics of Plasma Material Interaction Based on Synchrotron Radiation Scattering at the VEPP-4 Beamline 8. Physics Procedia, 2016, 84, 184-188.	1.2	7
21	Modification of preheated tungsten surface after irradiation at the GOL-3 facility. Fusion Engineering and Design, 2016, 113, 66-70.	1.9	7
22	Modeling of crack formation after pulse heat load in ITER-grade tungsten. AIP Conference Proceedings, 2016, , .	0.4	2
23	Applications of synchrotron radiation scattering to studies of plasma facing components at Siberian Synchrotron and Terahertz Radiation Centre. AIP Conference Proceedings, 2016, , .	0.4	5
24	Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads. AIP Conference Proceedings, 2016, , .	0.4	19
25	Observation of the tungsten surface damage under ITER-relevant transient heat loads during and after electron beam pulse. AIP Conference Proceedings, 2016, , .	0.4	7
26	Observation of dust particles ejected from tungsten surface under impact of intense transient heat load. AIP Conference Proceedings, 2016, , .	0.4	5
27	Modeling of plasma interaction with first wall in fusion reactor–measuring residual mechanical stresses in tungsten after irradiation at GOL-3 facility. Journal of Structural Chemistry, 2016, 57, 1314-1320.	1.0	7
28	Comparison of tungsten modification after irradiation at different facilities for PSI studies. AIP Conference Proceedings, 2016, , .	0.4	2
29	Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads. Physica Scripta, 2016, T167, 014046.	2.5	9
30	Study of the impurity composition and effective plasma charge in the GOL-3 facility. Plasma Physics Reports, 2015, 41, 529-534.	0.9	10
31	Theoretical investigation of crack formation in tungsten after heat loads. Journal of Nuclear Materials, 2015, 463, 246-249.	2.7	28
32	Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications. Journal of Nuclear Materials, 2015, 467, 165-171.	2.7	24
33	Combined impact of transient heat loads and steady-state plasma exposure on tungsten. Fusion Engineering and Design, 2015, 98-99, 1328-1332.	1.9	16
34	Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Physica Scripta, 2014, T159, 014005.	2.5	65
35	Surface modification and droplet formation of tungsten under hot plasma irradiation at the GOL-3. Journal of Nuclear Materials, 2013, 438, S677-S680.	2.7	28
36	GDMT-T: Superconducting Linear Device for PMI Studies. Fusion Science and Technology, 2013, 63, 184-187.	1.1	4

ANDREY A SHOSHIN

#	Article	IF	CITATIONS
37	Development of Extended Heating Pulse Operation Mode at GOL-3. Fusion Science and Technology, 2013, 63, 29-34.	1.1	21
38	Investigation of the Impact on Tungsten of Transient Heat Loads Induced by Laser Irradiation, Electron Beams and Plasma Guns. Fusion Science and Technology, 2013, 63, 197-200.	1.1	23
39	Structure Modification of Different Graphite and Glassy Carbon Surfaces under High Power Action by Hydrogen Plasma. Fusion Science and Technology, 2011, 59, 268-270.	1.1	9
40	Stabilization of Relativistic Electron Beam by Dense Plasma Cloud in GOL-3 Expander. Fusion Science and Technology, 2011, 59, 196-198.	1.1	8
41	Experiments with "Thin―Electron Beam at GOL-3. Fusion Science and Technology, 2011, 59, 144-149.	1.1	15
42	Plasma-Surface Interaction during ITER Type 1 ELMs: Comparison of Simulation with QSPA KH-50 and the GOL-3 Facilities. Fusion Science and Technology, 2011, 59, 57-60.	1.1	21
43	Diagnostics of heavy impurities at GOL-3 facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623, 750-753.	1.6	5
44	Dynamics of Electron Distribution Function in Multiple Mirror TRAP GOL-3. Fusion Science and Technology, 2009, 55, 144-146.	1.1	10
45	First Experiments on Neutral Injection in Multimirror Trap GOL-3. Fusion Science and Technology, 2009, 55, 153-156.	1.1	11
46	Experiments with Large-Mirror-Ratio Corrugation at Multiple Mirror Trap GOL-3. Fusion Science and Technology, 2009, 55, 147-152.	1.1	8
47	Spectroscopic studies of the interaction of a high-power plasma stream with a solid on the GOL-3 facility. Instruments and Experimental Techniques, 2008, 51, 251-257.	0.5	7
48	Anomalous Fast Heating of Ions in GOL-3 Facility. Fusion Science and Technology, 2007, 51, 352-354.	1.1	6
49	Use of Pellet Injection Technology at GOL-3 for Plasma Fueling and Plasma-Surface Interaction Research. Fusion Science and Technology, 2007, 51, 355-357.	1.1	2
50	Measurement of high pulsed pressures using the shift of ruby fluorescence lines. Instruments and Experimental Techniques, 2006, 49, 293-296.	0.5	3
51	Progress on the Multimirror Trap GOL-3. Fusion Science and Technology, 2005, 47, 35-42.	1.1	31
52	Study of Charge-Exchange Neutrals Emission from Hot Plasma at the Multimirror Trap GOL-3. Fusion Science and Technology, 2005, 47, 324-326.	1.1	6
53	Study of the mechanism for fast ion heating in the GOL-3 multimirror magnetic confinement system. Plasma Physics Reports, 2005, 31, 462-475.	0.9	26
54	Spectral Diagnostics for Plasma Research at the GOL-3 Facility. Instruments and Experimental Techniques, 2004, 47, 224-229.	0.5	12

ANDREY A SHOSHIN

#	Article	IF	CITATIONS
55	Plasma Spectroscopy at the Gol-3 Facility. Fusion Science and Technology, 2003, 43, 253-255.	1.1	3
56	Multimirror open Trap Gol-3: Recent Results. Fusion Science and Technology, 2003, 43, 30-36.	1.1	15
57	Features of High-Power E-Beam Application for Plasma Heating in Long Open Trap GOL-3. AlP Conference Proceedings, 2002, , .	0.4	О
58	Experiments Directed to Creation of Hot Plasma with β~1 at the GOL-3-II Facility. Fusion Science and Technology, 2001, 39, 135-138.	0.6	3
59	Application of high-power microsecond REB for inducing solid-state transformations under special pulse-pressure conditions. , 0, , .		0