Ingrid Moerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319156/publications.pdf

Version: 2024-02-01

276 papers 7,609 citations

33 h-index 71685 **76** g-index

289 all docs 289 docs citations

times ranked

289

6552 citing authors

#	Article	IF	CITATIONS
1	Hardware Efficient Clock Synchronization Across Wi-Fi and Ethernet-Based Network Using PTP. IEEE Transactions on Industrial Informatics, 2022, 18, 3808-3819.	11.3	12
2	Experimental V2X Evaluation for C-V2X and ITS-G5 Technologies in a Real-Life Highway Environment. IEEE Transactions on Network and Service Management, 2022, 19, 1521-1538.	4.9	36
3	Bluetooth-Low-Energy-Based Fall Detection and Warning System for Elderly People in Nursing Homes. Journal of Sensors, 2022, 2022, 1-14.	1.1	8
4	Impactless Beacon-Based Wireless TSN Association Procedure. , 2022, , .		2
5	Energy-Efficient Resource Allocation for Ultra-Dense Licensed and Unlicensed Dual-Access Small Cell Networks. IEEE Transactions on Mobile Computing, 2021, 20, 983-1000.	5.8	20
6	Machine Learning Enabled Wi-Fi Saturation Sensing for Fair Coexistence in Unlicensed Spectrum. IEEE Access, 2021, 9, 42959-42974.	4.2	14
7	A Dynamic Distributed Multi-Channel TDMA Slot Management Protocol for Ad Hoc Networks. IEEE Access, 2021, 9, 61864-61886.	4.2	7
8	In-Band Network Monitoring Technique to Support SDN-Based Wireless Networks. IEEE Transactions on Network and Service Management, 2021, 18, 627-641.	4.9	17
9	Enabling TSN over IEEE 802.11: Low-overhead Time Synchronization for Wi-Fi Clients. , 2021, , .		9
10	Bringing Time-Sensitive Networking to Wireless Professional Private Networks. Wireless Personal Communications, 2021, 121, 1255-1271.	2.7	9
11	A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics (Switzerland), 2021, 10, 318.	3.1	39
12	Coexistence Scheme for Uncoordinated LTE and WiFi Networks Using Experience Replay Based Q-Learning. Sensors, 2021, 21, 6977.	3.8	12
13	Adaptive Transport Layer Protocols using In-band Network Telemetry and eBPF., 2021,,.		2
14	Age-of-Information Aware In-band Network Telemetry for Better Network Predictability., 2021,,.		0
15	The CODYSUN Approach: A Novel Distributed Paradigm for Dynamic Spectrum Sharing in Satellite Communications. Sensors, 2021, 21, 8052.	3.8	O
16	Collaborative Flow Control in the DARPA Spectrum Collaboration Challenge. IEEE Transactions on Network and Service Management, 2020, 17, 2024-2038.	4.9	1
17	Adaptive CNN-based Private LTE Solution for Fair Coexistence with Wi-Fi in Unlicensed Spectrum. , 2020, , .		4
18	Instantaneous Signal Collision Detection Using In-Band Full-Duplex: Machine Learning VS Domain-specific Knowledge. , 2020, , .		2

#	Article	IF	Citations
19	An Al-Based Incumbent Protection System for Collaborative Intelligent Radio Networks. IEEE Wireless Communications, 2020, 27, 16-23.	9.0	9
20	Large-Scale Antenna Systems and Massive Machine Type Communications. International Journal of Wireless Information Networks, 2020, 27, 317-339.	2.7	1
21	Over-the-Air Software Updates in the Internet of Things: An Overview of Key Principles. IEEE Communications Magazine, 2020, 58, 35-41.	6.1	33
22	A Baseband Wireless Spectrum Hypervisor for Multiplexing Concurrent OFDM Signals. Sensors, 2020, 20, 1101.	3.8	5
23	Enabling Virtual Radio Functions on Software Defined Radio for Future Wireless Networks. Wireless Personal Communications, 2020, 113, 1579-1595.	2.7	5
24	CMCVT: A Concurrent Multi-Channel Virtual Transceiver. AEU - International Journal of Electronics and Communications, 2020, 120, 153230.	2.9	1
25	Multi-band sub-GHz technology recognition on NVIDIA's Jetson Nano. , 2020, , .		3
26	Augmented Wi-Fi: An Al-based Wi-Fi Management Framework for Wi-Fi/LTE Coexistence. , 2020, , .		3
27	Evaluating the Suitability of IEEE 802.11ah for Low-Latency Time-Critical Control Loops. IEEE Internet of Things Journal, 2019, 6, 7839-7848.	8.7	16
28	Deep Learning-Based Spectrum Prediction Collision Avoidance for Hybrid Wireless Environments. IEEE Access, 2019, 7, 45818-45830.	4.2	28
29	A Convolutional Neural Network Approach for Classification of LPWAN Technologies: Sigfox, LoRA and IEEE 802.15.4g., 2019, , .		16
30	On the Application of Massive MIMO Systems to Machine Type Communications. IEEE Access, 2019, 7, 2589-2611.	4.2	14
31	Towards low-complexity wireless technology classification across multiple environments. Ad Hoc Networks, 2019, 91, 101881.	5.5	26
32	Enabling Generic Wireless Coexistence Through Technology-Agnostic Dynamic Spectrum Access. Wireless Personal Communications, 2019, 106, 151-177.	2.7	1
33	Enhancing the Coexistence of LTE and Wi-Fi in Unlicensed Spectrum Through Convolutional Neural Networks. IEEE Access, 2019, 7, 28464-28477.	4.2	39
34	Recent Advances in 5G Technologies: New Radio Access and Networking. Wireless Communications and Mobile Computing, 2019, 2019, 1-2.	1.2	8
35	Using Deep Learning and Radio Virtualisation for Efficient Spectrum Sharing Among Coexisting Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 165-174.	0.3	1
36	A semi-supervised learning approach towards automatic wireless technology recognition. , 2019, , .		14

#	Article	IF	Citations
37	Demo Abstract: Identification of LPWAN Technologies using Convolutional Neural Networks. , 2019, , .		2
38	Low Overhead, Fine-grained End-to-end Monitoring of Wireless Networks using In-band Telemetry. , 2019, , .		8
39	Scatter Phy: A Physical Layer for the DARPA Spectrum Collaboration Challenge. , 2019, , .		4
40	SCATTER PHY: An Open Source Physical Layer for the DARPA Spectrum Collaboration Challenge. Electronics (Switzerland), 2019, 8, 1343.	3.1	5
41	Comparing f-OFDM and OFDM Performance for MIMO Systems Considering a 5G Scenario. , 2019, , .		18
42	Dynamic and Collaborative Spectrum Sharing: The SCATTER Approach. , 2019, , .		11
43	Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet of Things Journal, 2019, 6, 3097-3109.	8.7	102
44	Seamless roaming and guaranteed communication using a synchronized single-hop multi-gateway 802.15.4e TSCH network. Ad Hoc Networks, 2019, 86, 1-14.	5.5	10
45	Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing. Computer Communications, 2019, 133, 59-66.	5.1	15
46	Portability, compatibility and reuse of MAC protocols across different IoT radio platforms. Ad Hoc Networks, 2019, 86, 144-153.	5.5	6
47	Smart container monitoring using custom-made WSN technology: from business case to prototype. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	2.4	4
48	An adaptive LTE listen-before-talk scheme towards a fair coexistence with Wi-Fi in unlicensed spectrum. Telecommunication Systems, 2018, 68, 701-721.	2.5	22
49	End-to-End Learning From Spectrum Data: A Deep Learning Approach for Wireless Signal Identification in Spectrum Monitoring Applications. IEEE Access, 2018, 6, 18484-18501.	4.2	236
50	Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment. Telecommunication Systems, 2018, 67, 605-617.	2.5	3
51	A Framework for Intelligent Spectrum Sharing. , 2018, , .		0
52	MAC Protocol for Supporting Multiple Roaming Users in Mult-Cell UWB Localization Networks. , 2018, , .		7
53	WiSH-WalT: A Framework for Controllable and Reproducible LoRa Testbeds. , 2018, , .		4
54	A Spectrum Sharing Framework for Intelligent Next Generation Wireless Networks. IEEE Access, 2018, 6, 60704-60735.	4.2	14

#	Article	IF	CITATIONS
55	A Survey of LoRaWAN for IoT: From Technology to Application. Sensors, 2018, 18, 3995.	3.8	351
56	An Approach to Achieve Zero Turnaround Time in TDD Operation on SDR Front-End. IEEE Access, 2018, 6, 75461-75470.	4.2	5
57	Modelling the energy consumption for over-the-air software updates in LPWAN networks: SigFox, LoRa and IEEE 802.15.4g. Internet of Things (Netherlands), 2018, 3-4, 104-119.	7.7	34
58	A Q-Learning Scheme for Fair Coexistence Between LTE and Wi-Fi in Unlicensed Spectrum. IEEE Access, 2018, 6, 27278-27293.	4.2	51
59	Time-critical communication in 6TiSCH networks. , 2018, , .		7
60	Hybrid Schedule Management in 6TiSCH Networks: The Coexistence of Determinism and Flexibility. IEEE Access, 2018, 6, 33941-33952.	4.2	19
61	Flexible Wi-Fi Communication among Mobile Robots in Indoor Industrial Environments. Mobile Information Systems, 2018, 2018, 1-19.	0.6	9
62	Interactive web visualizer for IEEE 802.11ah ns-3 module. , 2018, , .		6
63	Analysis of large-scale experimental data from wireless networks. , 2018, , .		6
64	Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic. Sensors, 2018, 18, 325.	3.8	54
65	Light-Weight Integration and Interoperation of Localization Systems in IoT. Sensors, 2018, 18, 2142.	3.8	3
66	Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	2.4	11
67	Radio Hardware Virtualization for Software-Defined Wireless Networks. Wireless Personal Communications, 2018, 100, 113-126.	2.7	9
68	A Framework for the Automation of LTE Physical Layer Tests. Wireless Personal Communications, 2018, 102, 293-307.	2.7	1
69	A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Communications Surveys and Tutorials, 2018, 20, 3060-3097.	39.4	456
70	Radio Hardware Virtualization for Coping with Dynamic Heterogeneous Wireless Environments. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 287-297.	0.3	10
71	Surrogate modeling based cognitive decision engine for optimization of WLAN performance. Wireless Networks, 2017, 23, 2347-2359.	3.0	5
72	Optimizing Time-of-Arrival Localization Solutions for Challenging Industrial Environments. IEEE Transactions on Industrial Informatics, 2017, 13, 1430-1439.	11.3	37

#	Article	IF	CITATIONS
73	Assessing the Coexistence of Heterogeneous Wireless Technologies With an SDR-Based Signal Emulator: A Case Study of Wi-Fi and Bluetooth. IEEE Transactions on Wireless Communications, 2017, 16, 1755-1766.	9.2	13
74	Self-Organized Energy-Efficient Cross-Layer Optimization for Device to Device Communication in Heterogeneous Cellular Networks. IEEE Access, 2017, 5, 1117-1128.	4.2	22
75	Benchmarking of Localization Solutions: Guidelines for the Selection of Evaluation Points. Ad Hoc Networks, 2017, 59, 86-96.	5.5	8
76	Sub-GHz LPWAN Network Coexistence, Management and Virtualization: An Overview and Open Research Challenges. Wireless Personal Communications, 2017, 95, 187-213.	2.7	46
77	Experimental Optimization of Exposure Index and Quality of Service in Wlan Networks. Radiation Protection Dosimetry, 2017, 175, 394-405.	0.8	2
78	WiSHFUL: Enabling Coordination Solutions for Managing Heterogeneous Wireless Networks., 2017, 55, 118-125.		12
79	Wireless industrial communication for connected shuttle systems in warehouses. , 2017, , .		8
80	Channel Estimation for Massive MIMO TDD Systems Assuming Pilot Contamination and Frequency Selective Fading. IEEE Access, 2017, 5, 17733-17741.	4.2	40
81	Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet of Things Journal, 2017, 4, 2186-2198.	8.7	243
82	Evaluation of accurate indoor localization systems in industrial environments. , 2017, , .		21
83	LoRa indoor coverage and performance in an industrial environment: Case study. , 2017, , .		83
			83
84	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing. , 2017, , .		5
84	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing. ,		
	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing. , 2017, , .		5
85	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing., 2017,,. Coexistence between IEEE802.15.4 and IEEE802.11 through cross-technology signaling., 2017,,.		5
85	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing., 2017,,. Coexistence between IEEE802.15.4 and IEEE802.11 through cross-technology signaling., 2017,,. Implementation of PHY rate and A-MPDU length adaptation algorithm on WiSHFUL framework., 2017,,.		5 2 2
85 86 87	Cellular Access Multi-Tenancy through Small Cell Virtualization and Common RF Front-End Sharing., 2017,,. Coexistence between IEEE802.15.4 and IEEE802.11 through cross-technology signaling., 2017,,. Implementation of PHY rate and A-MPDU length adaptation algorithm on WiSHFUL framework., 2017,,. Framework for automated tests of LTE physical layers., 2017,,.		5 2 2

#	Article	IF	Citations
91	Cooperation Techniques between LTE in Unlicensed Spectrum and Wi-Fi towards Fair Spectral Efficiency. Sensors, 2017, 17, 1994.	3.8	17
92	Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices. Sensors, 2017, 17, 2081.	3.8	26
93	LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors, 2017, 17, 1193.	3.8	210
94	An Intuitive Drag and Drop Framework for Wireless Network Experimentation. , 2017, , .		1
95	Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications. Sensors, 2016, 16, 1217.	3.8	6
96	Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial. Sensors, 2016, 16, 790.	3.8	45
97	Experimental Evaluation of Unicast and Multicast CoAP Group Communication. Sensors, 2016, 16, 1137.	3.8	28
98	Troubleshooting Wireless Home Networks Using a Portable Testbed., 2016,,.		0
99	Impact of LTE Operating in Unlicensed Spectrum on Wi-Fi Using Real Equipment. , 2016, , .		16
100	EC-IoT: An easy configuration framework for constrained IoT devices. , 2016, , .		7
101	Improving user interactions with constrained devices in the web of things. , 2016, , .		3
102	Wireless handover performance in industrial environments: A case study. , 2016, , .		4
103	Wi-Fi helping out Bluetooth smart for an improved home automation user experience. , 2016, , .		5
104	Dynamic Reconfiguration of Network Protocols for Constrained Internet-of-Things Devices. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 269-281.	0.3	6
105	Performance analysis of multiple Indoor Positioning Systems in a healthcare environment. International Journal of Health Geographics, 2016, 15, 7.	2.5	77
106	Efficient Identification of a Multi-Objective Pareto Front on a Wireless Experimentation Facility. IEEE Transactions on Wireless Communications, 2016, 15, 6662-6675.	9.2	9
107	Cross-technology wireless experimentation: Improving 802.11 and 802.15.4e coexistence. , 2016, , .		3
108	SON for LTE-WLAN access network selection: design and performance. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	3

#	Article	IF	Citations
109	TAISC: A cross-platform MAC protocol compiler and execution engine. Computer Networks, 2016, 107, 315-326.	5.1	22
110	Demonstration Abstract: Platform for Benchmarking RF-Based Indoor Localization Solutions. , $2016, \dots$		1
111	Building accurate radio environment maps from multi-fidelity spectrum sensing data. Wireless Networks, 2016, 22, 2551-2562.	3.0	8
112	Data Driven Wireless Network Design: A Multi-level Modeling Approach. Wireless Personal Communications, 2016, 88, 63-77.	2.7	2
113	Observing CoAP groups efficiently. Ad Hoc Networks, 2016, 37, 368-388.	5.5	17
114	GITAR: Generic extension for Internet-of-Things ARchitectures enabling dynamic updates of network and application modules. Ad Hoc Networks, 2016, 36, 127-151.	5.5	34
115	To Mesh or not to Mesh: Flexible Wireless Indoor Communication Among Mobile Robots in Industrial Environments. Lecture Notes in Computer Science, 2016, , 325-338.	1.3	8
116	Comparability of RF-based indoor localisation solutions in heterogeneous environments: an experimental study. International Journal of Ad Hoc and Ubiquitous Computing, 2016, 23, 92.	0.5	18
117	RPL Mobility Support for Point-to-Point Traffic Flows towards Mobile Nodes. International Journal of Distributed Sensor Networks, 2015, 11, 470349.	2.2	21
118	New method to design multiplier-less pulse shaping filters with minimal number of operations. , 2015, , .		0
119	Secure communication in IP-based wireless sensor networks via a trusted gateway. , 2015, , .		9
120	Throughput optimization strategies for large-scale wireless LANs. , 2015, , .		0
121	Efficient global optimization of multi-parameter network problems on wireless testbeds. Ad Hoc Networks, 2015, 29, 15-31.	5.5	11
122	Pseudoâ€3D RSSIâ€based WSN localization algorithm using linear regression. Wireless Communications and Mobile Computing, 2015, 15, 1342-1354.	1.2	9
123	Throughput optimization of wireless LANs by surrogate model based cognitive decision making. , 2015, , .		0
124	Heterogeneous spectrum sensing: challenges and methodologies. Eurasip Journal on Wireless Communications and Networking, 2015, 2015, .	2.4	5
125	Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things. Wireless Personal Communications, 2015, 81, 1415-1436.	2.7	28
126	Platform for benchmarking of RF-based indoor localization solutions., 2015, 53, 126-133.		51

#	Article	IF	Citations
127	Representation of spectrum sensing experimentation functionality for federated management and control. , $2015, , .$		1
128	Radio-over-fibre for ultra-small 5G cells. , 2015, , .		22
129	Analysis and Experimental Verification of Frequency-Based Interference Avoidance Mechanisms in IEEE 802.15.4. IEEE/ACM Transactions on Networking, 2015, 23, 369-382.	3.8	27
130	Experimental validation of a reinforcement learning based approach for a service-wise optimisation of heterogeneous wireless sensor networks. Wireless Networks, 2015, 21, 931-948.	3.0	10
131	Integration of Heterogeneous Devices and Communication Models via the Cloud in the Constrained Internet of Things. International Journal of Distributed Sensor Networks, 2015, 2015, 1-16.	2.2	20
132	Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	20
133	A modified broadcast strategy for distributed signal estimation in a wireless sensor network with a tree topology. , 2014, , .		0
134	Flexible Unicast-Based Group Communication for CoAP-Enabled Devices. Sensors, 2014, 14, 9833-9877.	3.8	22
135	Online assessment of sensing performance in experimental spectrum sensing platforms. , 2014, , .		2
136	Broadcast Aggregation to Improve Quality of Service in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 383678.	2.2	4
137	Flexible, Direct Interactions between CoAP-enabled IoT Devices. , 2014, , .		2
138	SDDV: scalable data dissemination in vehicular ad hoc networks. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	2
139	A cognitive QoS management framework for WLANs. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	3
140	Support of multiple sinks via a virtual root for the RPL routing protocol. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	16
141	WiMAXâ€based monitoring network for a utility company: a case study. Transactions on Emerging Telecommunications Technologies, 2014, 25, 343-353.	3.9	2
142	snapMac: A generic MAC/PHY architecture enabling flexible MAC design. Ad Hoc Networks, 2014, 17, 37-59.	5.5	11
143	Greedy distributed node selection for node-specific signal estimation in wireless sensor networks. Signal Processing, 2014, 94, 57-73.	3.7	17
144	A reinforcement learning based solution for cognitive network cooperation between co-located, heterogeneous wireless sensor networks. Ad Hoc Networks, 2014, 17, 98-113.	5.5	37

#	Article	IF	CITATIONS
145	Fine-grained management of CoAP interactions with constrained IoT devices., 2014,,.		9
146	Simple RESTful sensor application development model using CoAP., 2014, , .		3
147	Wireless body area networks: Status and opportunities. , 2014, , .		12
148	Coping with Network Dynamics Using Reinforcement Learning Based Network Optimization in Wireless Sensor Networks. Wireless Personal Communications, 2014, 76, 169.	2.7	0
149	Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium. Tourism Management, 2014, 44, 67-81.	9.8	106
150	Enabling the web of things: facilitating deployment, discovery and resource access to IoT objects using embedded web services. International Journal of Web and Grid Services, 2014, 10, 218.	0.5	6
151	OCareClouds: improving home care by interconnecting elderly, care networks and their living environments., 2014,,.		0
152	Facilitating the creation of IoT applications through conditional observations in CoAP. Eurasip Journal on Wireless Communications and Networking, 2013, 2013, .	2.4	30
153	Network virtualization as an integrated solution for emergency communication. Telecommunication Systems, 2013, 52, 1859-1876.	2.5	6
154	QoS Challenges in Wireless Sensor Networked Robotics. Wireless Personal Communications, 2013, 70, 1059-1075.	2.7	18
155	IETF Standardization in the Field of the Internet of Things (IoT): A Survey. Journal of Sensor and Actuator Networks, 2013, 2, 235-287.	3.9	177
156	Advanced spectrum sensing with parallel processing based on software-defined radio. Eurasip Journal on Wireless Communications and Networking, 2013, 2013, .	2.4	11
157	An LSPI Based Reinforcement Learning Approach to Enable Network Cooperation in Cognitive Wireless Sensor Network. , 2013, , .		1
158	Determination of the duty cycle of WLAN for realistic radio frequency electromagnetic field exposure assessment. Progress in Biophysics and Molecular Biology, 2013, 111, 30-36.	2.9	53
159	Energy-efficient off-body communication nodes with receive diversity. , 2013, , .		3
160	Online evaluation of sensing characteristics for radio platforms in the CREW federated testbed. , 2013, , .		1
161	Building embedded applications via REST services for the internet of things. , 2013, , .		1
162	Group Communication in Constrained Environments Using CoAP-based Entities., 2013,,.		8

#	Article	IF	CITATIONS
163	Coexistence Aware Clear Channel Assessment. Lecture Notes in Computer Science, 2013, , 165-178.	1.3	3
164	Various Detection Techniques and Platforms for Monitoring Interference Condition in a Wireless Testbed. Lecture Notes in Computer Science, 2013, , 43-60.	1.3	6
165	Traffic Differentiation - A Basic Step Towards Providing End-to-End QoS on the Train-to-Wayside Wireless Communication System. , 2012, , .		0
166	Spectrum sensing for cognitive wireless applications inside aircraft cabins. , 2012, , .		3
167	Efficiently Observing Internet of Things Resources. , 2012, , .		6
168	Intra-, Inter-, and Extra-Container Path Loss for Shipping Container Monitoring Systems. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 889-892.	4.0	18
169	Leveraging upon standards to build the Internet of Things. , 2012, , .		2
170	An Eco-friendly Hybrid Urban Computing Network Combining Community-Based Wireless LAN Access and Wireless Sensor Networking. , 2012, , .		2
171	Energy awareness in self-growing sensor networks. , 2012, , .		1
172	Models for Wireless Data Communications in Indoor Train Environment. Wireless Personal Communications, 2012, 67, 741-760.	2.7	4
173	Facilitating Sensor Deployment, Discovery and Resource Access Using Embedded Web Services. , 2012, , .		18
174	Propagation modelling in a container environment. , 2012, , .		2
175	Internet of Things Virtual Networks: Bringing Network Virtualization to Resource-Constrained Devices. , 2012, , .		39
176	Network-wide synchronization in Wireless Sensor Networks. , 2012, , .		3
177	Geolocation database beyond TV white spaces? Matching applications with database requirements. , 2012, , .		20
178	The History of WiMAX: A Complete Survey of the Evolution in Certification and Standardization for IEEE 802.16 and WiMAX. IEEE Communications Surveys and Tutorials, 2012, 14, 1183-1211.	39.4	57
179	A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	13
180	Adaptive routing for mobile ad hoc networks. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	5

#	Article	IF	Citations
181	Avoiding collisions between IEEE 802.11 and IEEE 802.15.4 through coexistence aware clear channel assessment. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	30
182	PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	3
183	Efficient Calculation of Sensor Utility and Sensor Removal in Wireless Sensor Networks for Adaptive Signal Estimation and Beamforming. IEEE Transactions on Signal Processing, 2012, 60, 5857-5869.	5.3	31
184	Concept and framework of a self-regulating symbiotic network. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	4
185	A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems, 2012, 36, 1065-1094.	3.6	648
186	Signalling minimizing handover parameter optimization algorithm for LTE networks. Wireless Networks, 2012, 18, 295-306.	3.0	7
187	Adoption of Vehicular Ad Hoc Networking Protocols by Networked Robots. Wireless Personal Communications, 2012, 64, 489-522.	2.7	8
188	A negotiation-based networking methodology to enable cooperation across heterogeneous co-located networks. Ad Hoc Networks, 2012, 10, 901-917.	5.5	9
189	TV-kiosk: An Open and Extensible Platform for the Wellbeing of an Ageing Population. Lecture Notes in Computer Science, 2012, , 54-63.	1.3	5
190	Federating Wired and Wireless Test Facilities through Emulab and OMF: The iLab.t Use Case. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 305-320.	0.3	16
191	The IBBT w-iLab.t: A Large-Scale Generic Experimentation Facility for Heterogeneous Wireless Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 7-8.	0.3	5
192	Remote Control of Robots for Setting Up Mobility Scenarios during Wireless Experiments in the IBBT w-iLab.t. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 425-426.	0.3	3
193	Weighted Performance Based Handover Parameter Optimization in LTE. , 2011, , .		37
194	Suitability of the wireless testbed w-iLab.t for VANET research., 2011,,.		5
195	Exploring a Boundary-Less Cooperation Approach for Heterogeneous Co-Located Networks. , 2011, , .		0
196	Approximation of the IEEE 802.11p standard using commercial off-the-shelf IEEE 802.11a hardware. , 2011, , .		9
197	On the feasibility of utilizing smartphones for vehicular ad hoc networking. , 2011, , .		20
198	Support for heterogeneous dynamic network environments through a reconfigurable network service platform. , $2011, \ldots$		0

#	Article	IF	CITATIONS
199	Real-time wide-band spectrum sensing for cognitive radio., 2011,,.		3
200	Detailed Modeling of MAC Throughput and Ranges for Mobile WiMAX. IEEE Communications Letters, 2011, 15, 839-841.	4.1	2
201	Automated linear regression tools improve RSSI WSN localization in multipath indoor environment. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	2.4	38
202	Enabling direct connectivity between heterogeneous objects in the internet of things through a network-service-oriented architecture. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	2.4	36
203	An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	2.4	26
204	A survey on wireless body area networks. Wireless Networks, 2011, 17, 1-18.	3.0	878
205	IDRA: A flexible system architecture for next generation wireless sensor networks. Wireless Networks, 2011, 17, 1423-1440.	3.0	18
206	Managed Ecosystems of Networked Objects. Wireless Personal Communications, 2011, 58, 125-143.	2.7	8
207	Non-intrusive aggregation in wireless sensor networks. Ad Hoc Networks, 2011, 9, 324-340.	5.5	9
208	Development of a dynamic symbiotic network planner and application to a living lab testbed. , $2011, \ldots$		0
209	Data traffic differentiation and QoS on the train, in fast parameter varying, heterogeneous wireless networks., 2011,,.		4
210	The w-iLab.t Testbed. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2011, , 145-154.	0.3	39
211	Building the business case for wireless sensors in a factory setting. , 2011, , .		1
212	Techno-economical viability of cognitive solutions for a factory scenario., 2011,,.		10
213	Distributed Ontology-Based Monitoring on the IBBT WiLab.t Infrastructure. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2011, , 509-525.	0.3	3
214	Distributed Spectrum Sensing in a Cognitive Networking Testbed. Lecture Notes in Computer Science, 2011, , 325-326.	1.3	2
215	Handover Parameter Optimization in LTE Self-Organizing Networks. , 2010, , .		148
216	Strategies and Challenges for Interconnecting Wireless Mesh and Wireless Sensor Networks. Wireless Personal Communications, 2010, 53, 443-463.	2.7	20

#	Article	IF	Citations
217	SCTP for robust and flexible IP anycast services. Computer Communications, 2010, 33, 365-371.	5.1	1
218	Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network. Eurasip Journal on Wireless Communications and Networking, 2010, 2010, .	2.4	22
219	Validation of path loss by heuristic prediction tool with path loss and RSSI measurements. , 2010, , .		3
220	Performance Analysis of WiMAX for Mobile Applications. , 2010, , .		9
221	Supporting Protocol-Independent Adaptive QoS in Wireless Sensor Networks. , 2010, , .		4
222	The ADAMO project: Architecture to support communication for emergency services. , 2010, , .		2
223	Real-Life Performance of Protocol Combinations for Wireless Sensor Networks., 2010,,.		9
224	A Throughput Analysis at the MAC Layer of Mobile WiMAX. , 2010, , .		14
225	Spectrum Sharing in Heterogeneous Wireless Networks: An FP7 CREW Use Case. Lecture Notes in Computer Science, 2010, , 203-204.	1.3	1
226	Interconnecting Wireless Sensor and Wireless Mesh Networks: Challenges and Strategies., 2009,,.		8
227	Multipath Routing Issues in Virtual Private Ad Hoc Networks. , 2009, , .		0
228	Fast and safe emergency communication through network virtualization. , 2009, , .		2
229	Characterization of On-Body Communication Channel and Energy Efficient Topology Design for Wireless Body Area Networks. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 933-945.	3.2	259
230	Municipalities as a Driver for Wireless Broadband Access. Wireless Personal Communications, 2009, 49, 391-414.	2.7	6
231	An Information Driven Sensornet Architecture. , 2009, , .		12
232	Definition and Evaluation of Local Path Recovery Mechanisms in Wireless Sensor and Actuator Networks. , 2009, , .		0
233	Symbiotic Networks: Towards a New Level of Cooperation Between Wireless Networks. Wireless Personal Communications, 2008, 45, 479-495.	2.7	33
234	Improving Reliability in Multi-hop Body Sensor Networks. , 2008, , .		47

#	Article	IF	Citations
235	A cluster driven channel assignment mechanism for wireless mesh networks. , 2008, , .		5
236	Broadening the Concept of Aggregation in Wireless Sensor Networks. , 2008, , .		2
237	Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 2008, 7, 3359-3371.	9.2	333
238	AMoQoSA: Adaptive Modular QoS Architecture for Wireless Sensor Networks. , 2008, , .		9
239	Study on Distance of Interference Sources on Wireless Sensor Network. , 2008, , .		7
240	MEERA: Cross-Layer Methodology for Energy Efficient Resource Allocation in Wireless Networks. IEEE Transactions on Wireless Communications, 2008, 7, 98-109.	9.2	31
241	Design of a scalable its architecture based on IP datacast over DVB-H/SH., 2008,,.		2
242	SCTP as mobility protocol for enhancing internet on the train. , 2008, , .		2
243	Universal Modular Framework for Sensor Networks. Lecture Notes in Electrical Engineering, 2008, , 237-253.	0.4	3
244	Distributed On Demand Channel Selection in Multi Channel, Multi Interface Wireless Mesh Networks. , 2007, , .		3
245	Underground Broadband: Design of a Reliable WLAN Gap Filler Solution. , 2007, , .		0
246	Scalable Multiple-Description Image Coding Based on Embedded Quantization. Eurasip Journal on Image and Video Processing, 2007, 2007, 1-11.	2.6	10
247	The Need for Cooperation and Relaying in Short-Range High Path Loss Sensor Networks. , 2007, , .		59
248	A Low-delay Protocol for Multihop Wireless Body Area Networks. , 2007, , .		136
249	A Wireless Mesh Monitoring and Planning Tool for Emergency Services. , 2007, , .		12
250	MEERA: cross-layer methodology for energy efficient resource allocation in wireless networks. IEEE Transactions on Wireless Communications, 2007, 6, 617-628.	9.2	38
251	QoS-enabled Internet-on-train network architecture: inter-working by MMP-SCTP versus MIP., 2007,,.		7
252	Impact of the access network topology on the handoff performance. Wireless Networks, 2007, 13, 203-220.	3.0	3

#	Article	IF	Citations
253	MOFBAN: A Lightweight Modular Framework for Body Area Networks. Lecture Notes in Computer Science, 2007, , 610-622.	1.3	11
254	The Wireless Autonomous Spanning tree Protocol for Multihop Wireless Body Area Networks. , 2006, , .		43
255	Distributed cognitive coexistence of 802.15.4 with 802.11., 2006,,.		79
256	Mathematical model of dissipative parametric vibrations of flexible plates with nonhomogeneous boundary conditions. Mathematical Problems in Engineering, 2006, 2006, 1-16.	1.1	2
257	Virtual Private Ad Hoc Networking. Wireless Personal Communications, 2006, 38, 125-141.	2.7	17
258	Location assisted fast vertical handover for UMTS/WLAN overlay networks. Computer Communications, 2006, 29, 2601-2611.	5.1	3
259	Analysis of decentralized resource and service discovery mechanisms in wireless multi-hop networks. Computer Communications, 2006, 29, 2710-2720.	5.1	4
260	Q-MEHROM: Mobility support and resource reservations for mobile senders and receivers. Computer Networks, 2006, 50, 1158-1175.	5.1	3
261	Design of wireless mesh networks for aggregating traffic of fast moving users. , 2006, , .		3
262	Performance evaluation of a framework to support path changes in IP-based access networks. , 2006, , .		0
263	The Wireless Autonomous Spanning tree Protocol for Multihop Wireless Body Area Networks. , 2006, , .		42
264	Wireless Shadow Network Setup Through the Mehrom Micromobility Protocol., 2006,,.		0
265	Towards Ethernet-Based Wireless Mesh Networks for Fast Moving Users. , 2006, , .		4
266	WLC10-5: Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Global Telecommunications Conference (GLOBECOM), 2006, , .	0.0	54
267	A Tunnel-Based QoS Management Framework for Delivering Broadband Internet on Trains. Lecture Notes in Computer Science, 2006, , 552-561.	1.3	4
268	Optimizing Routing Schemes for Fast Moving Users in MST-Based Networks. Lecture Notes in Computer Science, 2006, , 4-20.	1.3	0
269	Optimizing Transmission and Shutdown for Energy-Efficient Real-time Packet Scheduling in Clustered Ad Hoc Networks. Eurasip Journal on Wireless Communications and Networking, 2005, 2005, 1.	2.4	10
270	FAMOUS: A Network Architecture for Delivering Multimedia Services to FAst MOving USers. Wireless Personal Communications, 2005, 33, 281-304.	2.7	39

#	Article	lF	Citations
271	Simple-to-fabricate and highly efficient spot-size converters using antiresonant reflecting optical waveguides. , 2003, , .		O
272	<title>Electrically pumped grating-assisted resonant-cavity light-emitting diodes</title> ., 2002, , .		7
273	High-efficiency 650-nm thin film light-emitting diodes. , 2001, 4278, 36.		O
274	<title>Extended-wavelength InGaAs detectors grown by metal-organic vapor phase epitaxy (MOVPE) on compliant substrates</title> .,2001,,.		2
275	Chemical mapping of InGaN MQWs. Journal of Crystal Growth, 2001, 230, 438-441.	1.5	7
276	A hybrid indoor localization solution using a generic architectural framework for sparse distributed wireless sensor networks. , 0, , .		6