Martin Oschatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319037/publications.pdf

Version: 2024-02-01

38742 43889 8,891 126 50 91 citations h-index g-index papers 129 129 129 11372 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes. Carbon, 2022, 186, 55-63.	10.3	20
2	Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries. Carbon, 2022, 188, 325-335.	10.3	9
3	Sustainable Cathodes for Lithiumâ€lon Energy Storage Devices Based on Tannic Acidâ€"Toward Ecofriendly Energy Storage. Advanced Sustainable Systems, 2021, 5, 2000206.	5.3	10
4	Immobilization of Goldâ€onâ€Carbon Catalysts Onto Perfluorocarbon Emulsion Droplets to Promote Oxygen Delivery in Aqueous Phase D â€Glucose Oxidation. ChemCatChem, 2021, 13, 196-201.	3.7	3
5	All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. Applied Catalysis B: Environmental, 2021, 285, 119773.	20.2	19
6	Sodium storage with high plateau capacity in nitrogen doped carbon derived from melamine–terephthalaldehyde polymers. Journal of Materials Chemistry A, 2021, 9, 8711-8720.	10.3	9
7	When water becomes an integral part of carbon $\hat{a}\in$ combining theory and experiment to understand the zeolite-like water adsorption properties of porous C ₂ N materials. Journal of Materials Chemistry A, 2021, 9, 22563-22572.	10.3	8
8	Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 11488-11500.	2.8	19
9	Understanding Structure–Property Relationships under Experimental Conditions for the Optimization of Lithiumâ€ion Capacitor Anodes based on All arbon omposite Materials. Energy Technology, 2021, 9, 2001054.	3.8	2
10	Influence of Pore Architecture and Chemical Structure on the Sodium Storage in Nitrogenâ€Doped Hard Carbons. Small, 2021, 17, e2006767.	10.0	29
11	The Functional Chameleon of Materials Chemistryâ€"Combining Carbon Structures into All arbon Hybrid Nanomaterials with Intrinsic Porosity to Overcome the "Functionality onductivityâ€Dilemma―in Electrochemical Energy Storage and Electrocatalysis. Small, 2021, 17, e2007508.	10.0	10
12	Toward Efficient Synthesis of Porous All-Carbon-Based Nanocomposites for Enantiospecific Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24228-24237.	8.0	3
13	"Giant―Nitrogen Uptake in Ionic Liquids Confined in Carbon Pores. Journal of the American Chemical Society, 2021, 143, 9377-9384.	13.7	25
14	Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32510-32519.	8.0	24
15	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	13.8	171
16	Preparation of hard carbon/carbon nitride nanocomposites by chemical vapor deposition to reveal the impact of open and closed porosity on sodium storage. Carbon, 2021, 185, 697-708.	10.3	13
17	Preparation and functionalization of free-standing nitrogen-doped carbon-based catalyst electrodes for electrocatalytic N2 fixation. Molecular Catalysis, 2021, 515, 111935.	2.0	5
18	Schiffâ€bases for sustainable battery and supercapacitor electrodes. Exploration, 2021, 1, .	11.0	21

#	Article	lF	CITATIONS
19	Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy, 2020, 67, 104240.	16.0	56
20	From Molecular Precursors to Nanoparticlesâ€"Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	14.9	57
21	Electrochemical N ₂ Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Applied Energy Materials, 2020, 3, 10061-10069.	5.1	40
22	On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials. Scientific Reports, 2020, 10, 5832.	3.3	9
23	Controlling pore size and pore functionality in sp ² -conjugated microporous materials by precursor chemistry and salt templating. Journal of Materials Chemistry A, 2020, 8, 21680-21689.	10.3	13
24	Mesoporous carbon materials with enantioselective surface obtained by nanocasting for selective adsorption of chiral molecules from solution and the gas phase. Carbon, 2020, 170, 550-557.	10.3	15
25	Potassium Poly(Heptazine Imide): Transition Metalâ€Free Solidâ€State Triplet Sensitizer in Cascade Energy Transfer and [3+2]â€cycloadditions. Angewandte Chemie - International Edition, 2020, 59, 15061-15068.	13.8	91
26	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 9067-9073.	13.8	68
27	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 9152-9158.	2.0	10
28	Influence of Local Environments in Pores of Different Size on the Catalytic Liquid-Phase Oxidation of <scp>d</scp> -Glucose by Au Nanoparticles Supported on Nanoporous Carbon. ACS Applied Nano Materials, 2020, 3, 7695-7703.	5.0	8
29	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO ₂ to CO at low overpotential. Green Chemistry, 2020, 22, 3095-3103.	9.0	16
30	Overcoming Chemical Inertness under Ambient Conditions: A Critical View on Recent Developments in Ammonia Synthesis via Electrochemical N ₂ Reduction by Asking Five Questions. ChemElectroChem, 2020, 7, 878-889.	3.4	32
31	Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon, 2020, 161, 162-168.	10.3	76
32	Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design. Sustainable Energy and Fuels, 2019, 3, 2819-2827.	4.9	28
33	Electrospun Carbon Fibers Replace Metals as a Current Collector in Supercapacitors. ACS Applied Energy Materials, 2019, 2, 5724-5733.	5.1	18
34	Enhanced Electrocatalytic N ₂ Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites. Angewandte Chemie, 2019, 131, 13235-13240.	2.0	24
35	Partially delocalized charge in Fe-doped NiCo ₂ S ₄ nanosheet–mesoporous carbon-composites for high-voltage supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19342-19347.	10.3	59
36	Enhanced Electrocatalytic N ₂ Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites. Angewandte Chemie - International Edition, 2019, 58, 13101-13106.	13.8	152

3

#	Article	IF	Citations
37	Microâ€Blooming: Hierarchically Porous Nitrogenâ€Doped Carbon Flowers Derived from Metalâ€Organic Mesocrystals. Small, 2019, 15, e1901986.	10.0	40
38	Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron–Carbon–Nitrogen Catalyst. ACS Applied Energy Materials, 2019, 2, 8359-8365.	5.1	43
39	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	14.9	50
40	Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in Sodiumâ€ion Capacitor Anodes by Using Electrospun Nitrogenâ€Doped Carbon Fibers. Advanced Functional Materials, 2019, 29, 1902858.	14.9	79
41	Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors. Energy Storage Materials, 2019, 20, 188-195.	18.0	26
42	Effects of Carbon Pore Size on the Contribution of Ionic Liquid Electrolyte Phase Transitions to Energy Storage in Supercapacitors. Frontiers in Materials, 2019, 6, .	2.4	13
43	Amino acid-based ionic liquids as precursors for the synthesis of chiral nanoporous carbons. Nanoscale Advances, 2019, 1, 4981-4988.	4.6	10
44	Influence of silica architecture on the catalytic activity of immobilized glucose oxidase. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 72-80.	0.9	11
45	Modification of Saltâ€Templated Carbon Surface Chemistry for Efficient Oxidation of Glucose with Supported Gold Catalysts. ChemCatChem, 2018, 10, 2458-2465.	3.7	9
46	The Concept of "Noble, Heteroatomâ€Doped Carbons,―Their Directed Synthesis by Electronic Band Control of Carbonization, and Applications in Catalysis and Energy Materials. Advanced Materials, 2018, 30, e1706836.	21.0	141
47	Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors. Advanced Energy Materials, 2018, 8, 1800026.	19.5	122
48	A search for selectivity to enable CO ₂ capture with porous adsorbents. Energy and Environmental Science, 2018, 11, 57-70.	30.8	457
49	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Doubleâ€Layer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	5.3	46
50	Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23521-23530.	10.3	61
51	Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis. Applied Catalysis A: General, 2018, 568, 213-220.	4.3	17
52	Crucial Factors for the Application of Functional Nanoporous Carbon-Based Materials in Energy and Environmental Applications. Journal of Carbon Research, 2018, 4, 56.	2.7	8
53	Fast Naâ€lon Intercalation in Zinc Vanadate for Highâ€Performance Naâ€lon Hybrid Capacitor. Advanced Energy Materials, 2018, 8, 1802800.	19.5	72
54	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	14.9	53

#	Article	IF	Citations
55	Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. Energy and Environmental Science, 2018, 11, 3069-3074.	30.8	33
56	C ₂ N _x O _{1\hat{a}^2x} framework carbons with defined microporosity and Co-doped functional pores. Journal of Materials Chemistry A, 2018, 6, 19013-19019.	10.3	28
57	Breaking the Limits of Ionic Liquidâ€Based Supercapacitors: Mesoporous Carbon Electrodes Functionalized with Manganese Oxide Nanosplotches for Dense, Stable, and Wideâ€Temperature Energy Storage. Advanced Functional Materials, 2018, 28, 1801298.	14.9	75
58	Singleâ€Site Gold Catalysts on Hierarchical Nâ€Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. Small Methods, 2018, 2, 1800202.	8.6	214
59	Template―and Metalâ€Free Synthesis of Nitrogenâ€Rich Nanoporous "Noble―Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. Angewandte Chemie - International Edition, 2018, 57, 10765-10770.	13.8	83
60	Templat―und metallfreie Synthese stickstoffreicher, nanoporöser und "edler―Kohlenstoffmaterialien durch direkte Kondensation eines vororganisierten Hexaazatriphenylen Vorläfers. Angewandte Chemie, 2018, 130, 10926-10931.	2.0	7
61	Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds. Journal of Physical Chemistry C, 2017, 121, 4197-4205.	3.1	64
62	Bioinspired carbide-derived carbons with hierarchical pore structure for the adsorptive removal of mercury from aqueous solution. Chemical Communications, 2017, 53, 4845-4848.	4.1	20
63	A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium. Nature Communications, 2017, 8, 13888.	12.8	46
64	Influence of precursor porosity on sodium and sulfur promoted iron/carbon Fischer–Tropsch catalysts derived from metal–organic frameworks. Chemical Communications, 2017, 53, 10204-10207.	4.1	36
65	Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem, 2017, 9, 620-628.	3.7	50
66	Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon, 2017, 113, 283-291.	10.3	171
67	Carbon Materials for Lithium Sulfur Batteries—Ten Critical Questions. Chemistry - A European Journal, 2016, 22, 7324-7351.	3.3	353
68	Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy. Carbon, 2016, 105, 314-322.	10.3	53
69	Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials, 2016, 28, 6477-6483.	6.7	81
70	Ordered Mesoporous Materials as Supports for Stable Iron Catalysts in the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem, 2016, 8, 2846-2852.	3.7	35
71	Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction. Journal of Energy Chemistry, 2016, 25, 985-993.	12.9	25
72	Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science and Technology, 2016, 6, 8464-8473.	4.1	34

#	Article	IF	Citations
73	ZnPd/ZnO Aerogels as Potential Catalytic Materials. Advanced Functional Materials, 2016, 26, 1014-1020.	14.9	20
74	Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces. ACS Nano, 2016, 10, 2559-2567.	14.6	165
75	Interactions Between Electrolytes and Carbon-Based Materialsâ€"NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	1.5	17
76	Tailoring Commercially Available Raw Materials for Lithiumâ€"Sulfur Batteries with Superior Performance and Enhanced Shelf Life. Energy Technology, 2015, 3, 1007-1013.	3.8	10
77	Synthesis of Ordered Mesoporous Carbon Materials by Dry Etching. Chemistry - A European Journal, 2015, 21, 14753-14757.	3.3	19
78	Kinetically Controlled Synthesis of PdNi Bimetallic Porous Nanostructures with Enhanced Electrocatalytic Activity. Small, 2015, 11, 1430-1434.	10.0	133
79	Preparation of hierarchical porous biomorphic carbide-derived carbon by polycarbosilane impregnation of wood. Microporous and Mesoporous Materials, 2015, 210, 26-31.	4.4	18
80	Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB ₂ Nanoparticles. Chemistry of Materials, 2015, 27, 5106-5115.	6.7	52
81	Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 17983-17990.	10.3	23
82	Advanced Structural Analysis of Nanoporous Materials by Thermal Response Measurements. Langmuir, 2015, 31, 4040-4047.	3.5	27
83	Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2015, 51, 7851-7854.	4.1	195
84	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	4.1	56
85	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSlâ€Based Organic Electrolytes. Advanced Energy Materials, 2015, 5, 1401792.	19.5	189
86	ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithiumâ€Sulfur Battery. Advanced Functional Materials, 2015, 25, 287-297.	14.9	315
87	Micro―and Mesoporous Carbideâ€Derived Carbon–Selenium Cathodes for Highâ€Performance Lithium Selenium Batteries. Advanced Energy Materials, 2015, 5, 1400981.	19.5	144
88	Nanocasting Hierarchical Carbide-Derived Carbons in Nanostructured Opal Assemblies for High-Performance Cathodes in Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 12130-12140.	14.6	79
89	Hydrogen production from catalytic decomposition of methane over ordered mesoporous carbons (CMK-3) and carbide-derived carbon (DUT-19). Carbon, 2014, 67, 377-389.	10.3	36
90	Role of Surface Functional Groups in Ordered Mesoporous Carbide-Derived Carbon/Ionic Liquid Electrolyte Double-Layer Capacitor Interfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2922-2928.	8.0	61

#	Article	IF	Citations
91	Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 2014, 2, 17649-17654.	10.3	54
92	Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hard-templating. Journal of Materials Chemistry A, 2014, 2, 12703-12707.	10.3	13
93	Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors. ACS Nano, 2014, 8, 7138-7146.	14.6	186
94	Structural Characterization of Micro- and Mesoporous Carbon Materials Using In Situ High Pressure ¹²⁹ Xe NMR Spectroscopy. Chemistry of Materials, 2014, 26, 3280-3288.	6.7	31
95	In-Depth Investigation of the Carbon Microstructure of Silicon Carbide-Derived Carbons by Wide-Angle X-ray Scattering. Journal of Physical Chemistry C, 2014, 118, 15705-15715.	3.1	39
96	Tailoring porosity in carbon materials for supercapacitor applications. Materials Horizons, 2014, 1, 157-168.	12.2	278
97	Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2014, 2, 5131.	10.3	27
98	Thermogravimetric Analysis of Activated Carbons, Ordered Mesoporous Carbide-Derived Carbons, and Their Deactivation Kinetics of Catalytic Methane Decomposition. Industrial & Decomposition Research, 2014, 53, 1741-1753.	3.7	23
99	Evolution of porosity in carbide-derived carbon aerogels. Journal of Materials Chemistry A, 2014, 2, 18472-18479.	10.3	27
100	A hard-templating route towards ordered mesoporous tungsten carbide and carbide-derived carbons. Microporous and Mesoporous Materials, 2014, 186, 163-167.	4.4	13
101	Silicon oxycarbide-derived carbons from a polyphenylsilsequioxane precursor for supercapacitor applications. Microporous and Mesoporous Materials, 2014, 188, 140-148.	4.4	48
102	Hierarchical Carbideâ€Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energyâ€Storage Material. Advanced Energy Materials, 2014, 4, 1300645.	19.5	96
103	Design of Functional Nanostructured Carbons for Advanced Heterogeneous Catalysts: A Review. Current Organic Chemistry, 2014, 18, 1262-1279.	1.6	12
104	Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 15177.	2.8	90
105	Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture. Journal of Materials Chemistry A, 2013, 1, 10951.	10.3	189
106	High capacity micro-mesoporous carbon–sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. Journal of Materials Chemistry A, 2013, 1, 9225.	10.3	138
107	Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochemistry Communications, 2013, 36, 38-41.	4.7	7 5
108	Sulfurâ€Infiltrated Micro―and Mesoporous Silicon Carbideâ€Derived Carbon Cathode for Highâ€Performance Lithium Sulfur Batteries. Advanced Materials, 2013, 25, 4573-4579.	21.0	296

#	Article	IF	CITATIONS
109	Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy and Environmental Science, 2013, 6, 3700.	30.8	461
110	Carbon dioxide activated carbide-derived carbon monoliths as high performance adsorbents. Carbon, 2013, 56, 139-145.	10.3	50
111	Imine-Linked Polymer-Derived Nitrogen-Doped Microporous Carbons with Excellent CO ₂ Capture Properties. ACS Applied Materials & Interfaces, 2013, 5, 3160-3167.	8.0	158
112	A new route for the preparation of mesoporous carbon materials with high performance in lithium–sulphur battery cathodes. Chemical Communications, 2013, 49, 5832.	4.1	97
113	Textural Characterization of Micro- and Mesoporous Carbons Using Combined Gas Adsorption and <i>n</i> -Nonane Preadsorption. Langmuir, 2013, 29, 8133-8139.	3.5	30
114	Preparation of cubic ordered mesoporous silicon carbide monoliths by pressure assisted preceramic polymer nanocasting. Microporous and Mesoporous Materials, 2013, 168, 142-147.	4.4	20
115	Titanium Carbide and Carbideâ€Derived Carbon Composite Nanofibers by Electrospinning of Tiâ€Resin Precursor. Chemie-Ingenieur-Technik, 2013, 85, 1742-1748.	0.8	21
116	Fungi-based porous carbons for CO2 adsorption and separation. Journal of Materials Chemistry, 2012, 22, 13911.	6.7	204
117	Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. Journal of Materials Chemistry, 2012, 22, 23893.	6.7	50
118	Preparation and application of cellular and nanoporous carbides. Chemical Society Reviews, 2012, 41, 5053.	38.1	78
119	Carbideâ€Derived Carbon Monoliths with Hierarchical Pore Architectures. Angewandte Chemie - International Edition, 2012, 51, 7577-7580.	13.8	131
120	Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon, 2012, 50, 1861-1870.	10.3	53
121	Ordered mesoporous carbide-derived carbons prepared by soft templating. Carbon, 2012, 50, 3987-3994.	10.3	46
122	Polymerization of polycarbosilanes in high internal phase emulsions for the synthesis of macroporous silicon carbide catalysts (polyHIPE-SiC). Journal of Materials Chemistry, 2011, 21, 11936.	6.7	12
123	Ceria/silicon carbide core–shell materials prepared by miniemulsion technique. Beilstein Journal of Nanotechnology, 2011, 2, 638-644.	2.8	7
124	Hierarchical Micro―and Mesoporous Carbideâ€Derived Carbon as a Highâ€Performance Electrode Material in Supercapacitors. Small, 2011, 7, 1108-1117.	10.0	283
125	A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon, 2010, 48, 3987-3992.	10.3	140
126	Towards stable and highâ€capacity anode materials for sodiumâ€ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers. Electrochemical Science Advances, 0, , e2100010.	2.8	1