Marcos Mariano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8317839/publications.pdf Version: 2024-02-01

MARCOS MARIANO

#	Article	IF	CITATIONS
1	Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 791-806.	2.1	685
2	Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 2017, 132, 368-393.	3.8	475
3	Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Polymer Science, 2018, 87, 197-227.	24.7	350
4	Advances in cellulose nanomaterials. Cellulose, 2018, 25, 2151-2189.	4.9	329
5	Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydrate Polymers, 2016, 153, 143-152.	10.2	155
6	Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydrate Polymers, 2016, 137, 174-183.	10.2	120
7	Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Industrial Crops and Products, 2016, 94, 454-462.	5.2	98
8	Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11, 19842-19849.	5.6	93
9	Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances, 2016, 6, 76017-76027.	3.6	90
10	Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals. International Journal of Biological Macromolecules, 2017, 102, 241-247.	7.5	63
11	Preparation of Cellulose Nanocrystal-Reinforced Poly(lactic acid) Nanocomposites through Noncovalent Modification with PLLA-Based Surfactants. ACS Omega, 2017, 2, 2678-2688.	3.5	61
12	Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. European Polymer Journal, 2015, 69, 208-223.	5.4	54
13	Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene) Tj ETQq1 1 0 2284-2297.	.784314 r 2.1	gBT /Overloc 50
14	Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polymer Composites, 2019, 40, 3351-3360.	4.6	45
15	Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. Materials Science and Engineering C, 2019, 98, 800-807.	7.3	37
16	Cell interactions and cytotoxic studies of cellulose nanofibers from CurauÃ; natural fibers. Carbohydrate Polymers, 2018, 201, 87-95.	10.2	36
17	Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing. Langmuir, 2016, 32, 10093-10103.	3.5	31
18	Cellulose nanomaterials: size and surface influence on the thermal and rheological behavior. Polimeros, 2018, 28, 93-102.	0.7	31

MARCOS MARIANO

#	Article	IF	CITATIONS
19	Cellulose nanocrystalâ€based poly(butylene adipateâ€coâ€terephthalate) nanocomposites covered with antimicrobial silver thin films. Polymer Engineering and Science, 2019, 59, E356.	3.1	31
20	Microstructural characterization of nanocellulose foams prepared in the presence of cationic surfactants. Carbohydrate Polymers, 2018, 195, 153-162.	10.2	29
21	Effect of depletion forces on the morphological structure of carboxymethyl cellulose and micro/nano cellulose fiber suspensions. Journal of Colloid and Interface Science, 2019, 538, 228-236.	9.4	19
22	Tailoring strength of nanocellulose foams by electrostatic complexation. Carbohydrate Polymers, 2021, 256, 117547.	10.2	13
23	Mold heat conductance as drive force for tuning freeze-casted nanocellulose foams microarchitecture. Materials Letters, 2018, 225, 167-170.	2.6	11
24	Nanocellulose: Common Strategies for Processing of Nanocomposites. ACS Symposium Series, 2017, , 203-225.	0.5	9
25	Inclusion Complexation between α-Cyclodextrin and Oligo(ethylene glycol) Methyl Ether Methacrylate. ACS Omega, 2020, 5, 9517-9528.	3.5	7