Clemens van Blitterswijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8316366/publications.pdf

Version: 2024-02-01

501 papers 39,965 citations

106 h-index 173 g-index

510 all docs

510 docs citations

510 times ranked

31646 citing authors

#	Article	IF	CITATIONS
1	Desymmetrization via Activated Esters Enables Rapid Synthesis of Multifunctional Benzene-1,3,5-tricarboxamides and Creation of Supramolecular Hydrogelators. Journal of the American Chemical Society, 2022, 144, 4057-4070.	13.7	13
2	From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Frontiers in Cell and Developmental Biology, 2022, 10, 838356.	3.7	6
3	Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells. ACS Applied Nano Materials, 2022, 5, 3237-3251.	5.0	8
4	Polystyrene Pocket Lithography: Sculpting Plastic with Light. Advanced Materials, 2022, 34, e2200687.	21.0	3
5	The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS ONE, 2022, 17, e0257578.	2.5	2
6	3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes. ACS Biomaterials Science and Engineering, 2022, 8, 2684-2699.	5.2	27
7	Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of <1>In Vivo 1 Tissue-Engineered Blood Vessels. ACS Applied Materials & Interfaces, 2022, 14, 28591-28603.	8.0	9
8	Assessment of Cell–Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroids. Small, 2022, 18, .	10.0	7
9	Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials, 2021, 267, 120449.	11.4	11
10	Control Delivery of Multiple Growth Factors to Actively Steer Differentiation and Extracellular Matrix Protein Production. Advanced Biology, 2021, 5, 2000205.	2.5	2
11	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	8.3	29
12	Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. International Journal of Molecular Sciences, 2021, 22, 3901.	4.1	27
13	The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Frontiers in Bioengineering and Biotechnology, 2021, 9, 729057.	4.1	4
14	PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704185.	4.1	1
15	Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extraction. Biomaterials Science, 2021, 9, 7838-7850.	5.4	2
16	Synthetic Materials that Affect the Extracellular Matrix via Cellular Metabolism and Responses to a Metabolic State. Frontiers in Bioengineering and Biotechnology, 2021, 9, 742132.	4.1	5
17	The Role of Alpha Cells in the Self-Assembly of Bioengineered Islets. Tissue Engineering - Part A, 2020, 27, 1055-1063.	3.1	3
18	A New Microengineered Platform for 4D Tracking of Single Cells in a Stemâ€Cellâ€Based In Vitro Morphogenesis Model. Advanced Materials, 2020, 32, e1907966.	21.0	10

#	Article	IF	CITATIONS
19	Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11. Biomaterials, 2020, 254, 120127.	11.4	13
20	Overcoming kidney organoid challenges for regenerative medicine. Npj Regenerative Medicine, 2020, 5, 8.	5.2	48
21	Singleâ€Cell Tracking: A New Microengineered Platform for 4D Tracking of Single Cells in a Stemâ€Cellâ€Based In Vitro Morphogenesis Model (Adv. Mater. 24/2020). Advanced Materials, 2020, 32, 2070182.	21.0	0
22	Building Complex Life Through Self-Organization. Tissue Engineering - Part A, 2019, 25, 1341-1346.	3.1	17
23	Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1815-1829.	2.7	87
24	Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 231.	4.1	16
25	From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation. Nanoscale, 2019, 11, 14312-14321.	5.6	10
26	Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends in Biotechnology, 2019, 37, 838-854.	9.3	107
27	Grow with the Flow: When Morphogenesis Meets Microfluidics. Advanced Materials, 2019, 31, e1805764.	21.0	42
28	Sustained delivery of growth factors with high loading efficiency in a layer by layer assembly. Biomaterials Science, 2019, 8, 174-188.	5.4	22
29	Blastocyst-like structures generated solely from stem cells. Nature, 2018, 557, 106-111.	27.8	366
30	An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs. Biomedical Materials (Bristol), 2018, 13, 044102.	3.3	4
31	New insights into the effects of biomaterial chemistry and topography on the morphology of kidney epithelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e817-e827.	2.7	13
32	Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e150-e158.	2.7	65
33	Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels, 2018, 4, 85.	4.5	68
34	Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2013-2020.	2.7	36
35	The Components of Bone and What They Can Teach Us about Regeneration. Materials, 2018, 11, 14.	2.9	65
36	Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 87.	4.1	10

#	Article	IF	CITATIONS
37	<i>O</i> -Phenanthroline as modulator of the hypoxic and catabolic response in cartilage tissue-engineering models. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 724-732.	2.7	2
38	Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Engineering - Part A, 2017, 23, 458-469.	3.1	14
39	Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3273-3283.	2.7	18
40	Mining for osteogenic surface topographies: In silico design to inÂvivo osseo-integration. Biomaterials, 2017, 137, 49-60.	11.4	66
41	Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomaterialia, 2017, 57, 487-497.	8.3	45
42	Calcium phosphates and silicon: exploring methods of incorporation. Biomaterials Research, 2017, 21, 6.	6.9	11
43	3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomaterialia, 2017, 55, 310-322.	8.3	16
44	Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials, 2017, 135, 10-22.	11.4	33
45	Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. Advanced Materials, 2017, 29, 1603259.	21.0	34
46	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	12.2	144
47	Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 38187-38200.	8.0	97
48	NanoTopoChip: High-throughput nanotopographical cell instruction. Acta Biomaterialia, 2017, 62, 188-198.	8.3	36
49	Covalent Binding of Bone Morphogenetic Proteinâ€2 and Transforming Growth Factorâ€Î²3 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration. Biotechnology Journal, 2017, 12, 1700072.	3.5	46
50	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	7.1	121
51	Cell-instructive high-resolution micropatterned polylactic acid surfaces. Biofabrication, 2017, 9, 035004.	7.1	14
52	Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromolecular Rapid Communications, 2017, 38, 1700186.	3.9	15
53	Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology. Biomedical Microdevices, 2017, 19, 81.	2.8	7
54	Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomaterialia, 2017, 59, 82-93.	8.3	93

#	Article	IF	Citations
55	An Approach to In Vitro Manufacturing of Hypertrophic Cartilage Matrix for Bone Repair. Bioengineering, 2017, 4, 35.	3.5	7
56	Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation. Frontiers in Bioengineering and Biotechnology, 2017, 5, 6.	4.1	45
57	The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2017, 5, 30.	4.1	36
58	Engineering Niches for Bone Tissue Regeneration. , 2017, , 499-516.		1
59	Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 679-689.	2.7	34
60	Collagen modules for <i>in situ</i> delivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 363-373.	2.7	8
61	Spatial distribution and survival of human and goat mesenchymal stromal cells on hydroxyapatite and landi-tricalcium phosphate. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 233-244.	2.7	12
62	The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells. Advanced Healthcare Materials, 2016, 5, 1775-1785.	7.6	17
63	Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. Journal of Biomedical Materials Research - Part A, 2016, 104, 1946-1960.	4.0	21
64	Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene) Tj ETQq0 0 0 rgBT Regeneration. Advanced Healthcare Materials, 2016, 5, 232-243.	/Overlock 7.6	10 Tf 50 387 ⁻ 11
65	Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans. Advanced Healthcare Materials, 2016, 5, 1606-1616.	7.6	60
66	Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration. Advanced Healthcare Materials, 2016, 5, 1753-1763.	7.6	62
67	Directed Assembly and Development of Materialâ€Free Tissues with Complex Architectures. Advanced Materials, 2016, 28, 4032-4039.	21.0	54
68	Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Scientific Reports, 2016, 6, 22898.	3.3	147
69	Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. Journal of Materials Chemistry B, 2016, 4, 4244-4257.	5.8	37
70	Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication, 2016, 8, 045007.	7.1	63
71	Moldâ€Based Application of Laserâ€Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning. Macromolecular Bioscience, 2016, 16, 43-49.	4.1	12
72	Back Cover: Macromol. Biosci. 1/2016. Macromolecular Bioscience, 2016, 16, 168-168.	4.1	0

#	Article	IF	Citations
73	Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016). Advanced Healthcare Materials, 2016, 5, 1832-1832.	7.6	4
74	Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Scientific Reports, 2016, 6, 18948.	3.3	65
75	Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano, 2016, 10, 5789-5799.	14.6	62
76	Development of Highly Functional Biomaterials by Decoupling and Recombining Material Properties. Advanced Materials, 2016, 28, 1803-1808.	21.0	17
77	Micro-aggregates do not influence bone marrow stromal cell chondrogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 1021-1032.	2.7	5
78	Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomaterialia, 2016, 36, 210-219.	8.3	88
79	Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 2016, 36, 267-276.	8.3	36
80	Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis. Biomedical Materials (Bristol), 2016, 11, 015020.	3.3	33
81	Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2016, 27, 54.	3.6	11
82	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	4.8	19
83	Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication, 2016, 8, 015014.	7.1	48
84	Surface micropatterning with zirconia and calcium phosphate ceramics by micromoulding in capillaries. Journal of Materials Chemistry B, 2016, 4, 1044-1055.	5.8	9
85	Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. Biomaterials, 2016, 76, 261-272.	11.4	26
86	Chondrocytes Cocultured with Stromal Vascular Fraction of Adipose Tissue Present More Intense Chondrogenic Characteristics Than with Adipose Stem Cells. Tissue Engineering - Part A, 2016, 22, 336-348.	3.1	24
87	Coculturing Human Islets with Proangiogenic Support Cells to Improve Islet Revascularization at the Subcutaneous Transplantation Site. Tissue Engineering - Part A, 2016, 22, 375-385.	3.1	27
88	Adhesion and proliferation of cells and bacteria on microchip with different surfaces microstructures. Biomedizinische Technik, 2016, 61, 475-482.	0.8	5
89	3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab on A Chip, 2016, 16, 734-742.	6.0	63
90	High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomaterialia, 2016, 34, 1-20.	8.3	84

#	Article	IF	CITATIONS
91	Controlled aggregation of primary human pancreatic islet cells leads to glucoseâ€responsive pseudoislets comparable to native islets. Journal of Cellular and Molecular Medicine, 2015, 19, 1836-1846.	3.6	64
92	A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Scientific Reports, 2015, 5, 14804.	3.3	31
93	Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data in Brief, 2015, 5, 84-94.	1.0	1
94	Exploring the Materialâ€Induced Transcriptional Landscape of Osteoblasts on Bone Graft Materials. Advanced Healthcare Materials, 2015, 4, 1691-1700.	7.6	12
95	Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. Journal of Biomedical Materials Research - Part A, 2015, 103, 1188-1199.	4.0	54
96	Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Frontiers in Bioengineering and Biotechnology, 2015, 3, 169.	4.1	18
97	Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 2015, 7, 025009.	7.1	136
98	Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression inÂvitro and inÂvivo. Biomaterials, 2015, 61, 190-202.	11.4	9
99	Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomaterialia, 2015, 15, 29-38.	8.3	61
100	Microfluidic platform with four orthogonal and overlapping gradients for soluble compound screening in regenerative medicine research. Electrophoresis, 2015, 36, 475-484.	2.4	13
101	Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17, 1-15.	8.3	56
102	Evaluation of Cartilage Repair by Mesenchymal Stem Cells Seeded on a PEOT/PBT Scaffold in an Osteochondral Defect. Annals of Biomedical Engineering, 2015, 43, 2069-2082.	2.5	25
103	High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Engineering - Part C: Methods, 2015, 21, 726-736.	2.1	12
104	Creeping Proteins in Microporous Structures: Polymer Brushâ€Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 1169-1174.	7.6	39
105	Differentiation of Mesenchymal Stem Cells under Hypoxia and Normoxia: Lipid Profiles Revealed by Time-of-Flight Secondary Ion Mass Spectrometry and Multivariate Analysis. Analytical Chemistry, 2015, 87, 3981-3988.	6.5	25
106	The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 34-52.	3.6	110
107	MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells and Development, 2015, 24, 1946-1955.	2.1	10
108	Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Advances, 2015, 5, 54510-54516.	3.6	29

#	Article	IF	CITATIONS
109	Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology (United Kingdom), 2015, 7, 1574-1586.	1.3	6
110	Plug and play: combining materials and technologies to improve bone regenerative strategies. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 745-759.	2.7	21
111	Monitoring nutrient transport in tissue-engineered grafts. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 952-960.	2.7	32
112	An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds. PLoS ONE, 2014, 9, e115000.	2.5	6
113	Distinct Effect of TCF4 on the NFκB Pathway in Human Primary Chondrocytes and the C20/A4 Chondrocyte Cell Line. Cartilage, 2014, 5, 181-189.	2.7	3
114	Modeling mechanical signals on the surface of $\hat{A}\mu$ CT and CAD based rapid prototype scaffold models to predict (early stage) tissue development. Biotechnology and Bioengineering, 2014, 111, 1864-1875.	3.3	18
115	Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. Journal of Cellular and Molecular Medicine, 2014, 18, 134-142.	3.6	23
116	In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter, 2014, 4, e27664.	2.6	89
117	Development of multilayer constructs for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 106-119.	2.7	10
118	Mesenchymal Stromal/Stem Cell–or Chondrocyte-Seeded Microcarriers as Building Blocks for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 2513-2523.	3.1	42
119	Engineered Microâ€Objects as Scaffolding Elements in Cellular Building Blocks for Bottomâ€Up Tissue Engineering Approaches. Advanced Materials, 2014, 26, 2592-2599.	21.0	78
120	The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomaterialia, 2014, 10, 3254-3263.	8.3	133
121	Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices. Lab on A Chip, 2014, 14, 1816-1820.	6.0	17
122	On the Horizon: Instructive nanomaterials hold the potential to mimic tissue complexity. IEEE Pulse, 2014, 5, 44-49.	0.3	2
123	Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13954-13959.	7.1	104
124	A Supramolecular Host–Guest Carrier System for Growth Factors Employing VHH Fragments. Journal of the American Chemical Society, 2014, 136, 12675-12681.	13.7	37
125	Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Journal of Controlled Release, 2014, 187, 66-73.	9.9	63
126	Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1559-1569.	3.3	59

#	Article	IF	CITATIONS
127	Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects. Journal of Biomedical Materials Research - Part A, 2014, 102, 1399-1407.	4.0	27
128	A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication, 2014, 6, 035015.	7.1	53
129	Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix. Scientific Reports, 2014, 4, 6325.	3.3	74
130	Development of materials for regenerative medicine: from clinical need to clinical application. , 2013, , 155-176.		1
131	Bioinformatics-based selection of a model cell type for inÂvitro biomaterial testing. Biomaterials, 2013, 34, 5552-5561.	11.4	11
132	Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab on A Chip, 2013, 13, 3512.	6.0	96
133	Cell Sources for Articular Cartilage Repair Strategies: Shifting from Monocultures to Cocultures. Tissue Engineering - Part B: Reviews, 2013, 19, 31-40.	4.8	65
134	Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integrative Biology (United Kingdom), 2013, 5, 920-931.	1.3	88
135	Engineering New Bone via a Minimally Invasive Route Using Human Bone Marrow-Derived Stromal Cell Aggregates, Microceramic Particles, and Human Platelet-Rich Plasma Gel. Tissue Engineering - Part A, 2013, 19, 340-349.	3.1	12
136	GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Research and Therapy, 2013, 15, R126.	3.5	74
137	Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polymer Chemistry, 2013, 4, 337-342.	3.9	65
138	Effect of Antioxidant Supplementation on the Total Yield, Oxidative Stress Levels, and Multipotency of Bone Marrow-Derived Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2013, 19, 928-937.	3.1	24
139	The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials, 2013, 34, 2167-2176.	11.4	102
140	A clinical feasibility study to evaluate the safety and efficacy of PEOT/PBT implants for human donor site filling during mosaicplasty. European Journal of Orthopaedic Surgery and Traumatology, 2013, 23, 81-91.	1.4	18
141	A modular versatile chip carrier for high-throughput screening of cell–biomaterial interactions. Journal of the Royal Society Interface, 2013, 10, 20120753.	3.4	12
142	Predicting the therapeutic efficacy of MSC in bone tissue engineering using the molecular marker CADM1. Biomaterials, 2013, 34, 4592-4601.	11.4	53
143	A small molecule approach to engineering vascularized tissue. Biomaterials, 2013, 34, 3053-3063.	11.4	31
144	Monolithic and assembled polymer–ceramic composites for bone regeneration. Acta Biomaterialia, 2013, 9, 5708-5717.	8.3	29

#	Article	IF	CITATIONS
145	The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials, 2013, 34, 4259-4265.	11.4	39
146	Gene expression profiling of dedifferentiated human articular chondrocytes inÂmonolayer culture. Osteoarthritis and Cartilage, 2013, 21, 599-603.	1.3	147
147	Spheroid culture as a tool for creating 3D complex tissues. Trends in Biotechnology, 2013, 31, 108-115.	9.3	811
148	Materiomics: An â€∢i>omics Approach to Biomaterials Research. Advanced Materials, 2013, 25, 802-824.	21.0	134
149	Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication, 2013, 5, 025003.	7.1	30
150	Insulin-Like Growth Factor-I Enhances Proliferation and Differentiation of Human Mesenchymal Stromal Cells <i>In Vitro</i> I>. Tissue Engineering - Part A, 2013, 19, 1817-1828.	3.1	17
151	Fibroblast Growth Factor-1 Is a Mesenchymal Stromal Cell-Secreted Factor Stimulating Proliferation of Osteoarthritic Chondrocytes in Co-Culture. Stem Cells and Development, 2013, 22, 2356-2367.	2.1	64
152	<i>In vivo</i> screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integrative Biology (United Kingdom), 2013, 5, 889-898.	1.3	31
153	The Effect of Donor Variation and Senescence on Endothelial Differentiation of Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2013, 19, 2318-2329.	3.1	26
154	Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter, 2013, 3, e23705.	2.6	40
155	A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures. Small, 2013, 9, 3405-3409.	10.0	42
156	High content imaging in the screening of biomaterial-induced MSC behavior. Biomaterials, 2013, 34, 1498-1505.	11.4	21
157	Thin Polymer Brush Decouples Biomaterial's Micro-/Nanotopology and Stem Cell Adhesion. Langmuir, 2013, 29, 13843-13852.	3.5	31
158	A Dual Flow Bioreactor with Controlled Mechanical Stimulation for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 774-783.	2.1	29
159	Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of the Royal Society Interface, 2013, 10, 20130464.	3.4	43
160	T Cell Factor 4 Is a Pro-catabolic and Apoptotic Factor in Human Articular Chondrocytes by Potentiating Nuclear Factor κB Signaling. Journal of Biological Chemistry, 2013, 288, 17552-17558.	3.4	58
161	Boosting Angiogenesis and Functional Vascularization in Injectable Dextran–Hyaluronic Acid Hydrogels by Endothelial-Like Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2013, 20, 131112094536009.	3.1	16
162	Electrospinning: A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures (Small 20/2013). Small, 2013, 9, 3544-3544.	10.0	1

#	Article	IF	Citations
163	Small molecule inhibitors of WNT/ \hat{l}^2 -catenin signaling block IL- $1\hat{l}^2$ - and TNF \hat{l} ±-induced cartilage degradation. Arthritis Research and Therapy, 2013, 15, R93.	3.5	32
164	Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans. PLoS ONE, 2013, 8, e64772.	2. 5	56
165	Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 2013, 8, e57157.	2.5	113
166	Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy. PLoS ONE, 2013, 8, e78148.	2.5	18
167	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	2.5	105
168	Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites. Materials Research Society Symposia Proceedings, 2012, 1453, 21.	0.1	0
169	Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy. Journal of Biomedical Optics, 2012, 17, 116012.	2.6	38
170	Diverse Effects of Cyclic AMP Variants on Osteogenic and Adipogenic Differentiation of Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2012, 18, 1431-1442.	3.1	14
171	Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4413-4418.	7.1	62
172	Patterns of Amino Acid Metabolism by Proliferating Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2012, 18, 654-664.	3.1	33
173	Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6886-6891.	7.1	134
174	Layer-by-Layer Tissue Microfabrication Supports Cell Proliferation (i>In Vitro (i>and (i>In Vivo (i)). Tissue Engineering - Part C: Methods, 2012, 18, 62-70.	2.1	98
175	Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 2012, 7, 46.	1.6	103
176	Cationic polymers and their therapeutic potential. Chemical Society Reviews, 2012, 41, 7147.	38.1	588
177	Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells. Acta Biomaterialia, 2012, 8, 2969-2977.	8.3	36
178	Gremlin 1, Frizzledâ€related protein, and Dkkâ€1 are key regulators of human articular cartilage homeostasis. Arthritis and Rheumatism, 2012, 64, 3302-3312.	6.7	119
179	Forskolin Enhances <i>In Vivo</i> Bone Formation by Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2012, 18, 558-567.	3.1	34
180	Trophic Effects of Mesenchymal Stem Cells in Chondrocyte Co-Cultures are Independent of Culture Conditions and Cell Sources. Tissue Engineering - Part A, 2012, 18, 1542-1551.	3.1	186

#	Article	IF	CITATIONS
181	Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements. Tissue Engineering - Part B: Reviews, 2012, 18, 101-115.	4.8	258
182	The physics of tissue formation with mesenchymal stem cells. Trends in Biotechnology, 2012, 30, 583-590.	9.3	8
183	A Mesenchymal Stromal Cell Gene Signature for Donor Age. PLoS ONE, 2012, 7, e42908.	2.5	57
184	Hypoxia Inhibits Hypertrophic Differentiation and Endochondral Ossification in Explanted Tibiae. PLoS ONE, 2012, 7, e49896.	2.5	36
185	Streamlining the generation of an osteogenic graft by 3D culture of unprocessed bone marrow on ceramic scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 103-112.	2.7	12
186	A Wnt∫ı²â€catenin negative feedback loop inhibits interleukinâ€1–induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis and Rheumatism, 2012, 64, 2589-2600.	6.7	79
187	Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 2012, 33, 1281-1290.	11.4	488
188	Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials, 2012, 33, 3164-3174.	11.4	79
189	A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials, 2012, 33, 3205-3215.	11.4	363
190	The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials, 2012, 33, 3651-3661.	11.4	76
191	The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice. Biomaterials, 2012, 33, 5696-5705.	11.4	54
192	Fabrication of cell container arrays with overlaid surface topographies. Biomedical Microdevices, 2012, 14, 95-107.	2.8	40
193	Endothelial Differentiation of Mesenchymal Stromal Cells. PLoS ONE, 2012, 7, e46842.	2.5	171
194	'Smart' biomaterials and osteoinductivity. Nature Reviews Rheumatology, 2011, 7, 1-1.	8.0	9
195	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	2.1	149
196	Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities. Australian Journal of Chemistry, 2011, 64, 1261.	0.9	25
197	Raman Microspectroscopy: A Noninvasive Analysis Tool for Monitoring of Collagen-Containing Extracellular Matrix Formation in a Medium-Throughput Culture System. Tissue Engineering - Part C: Methods, 2011, 17, 737-744.	2.1	18
198	Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. Journal of Controlled Release, 2011, 152, 186-195.	9.9	127

#	Article	IF	CITATIONS
199	Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Journal of Materials Science: Materials in Medicine, 2011, 22, 97-105.	3.6	42
200	Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 180-190.	2.7	21
201	Thermoforming of Filmâ€Based Biomedical Microdevices. Advanced Materials, 2011, 23, 1311-1329.	21.0	98
202	Closer to Nature–Bioâ€inspired Patterns by Transforming Latent Lithographic Images. Advanced Materials, 2011, 23, 4873-4879.	21.0	13
203	Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Acta Biomaterialia, 2011, 7, 3312-3324.	8.3	48
204	Chitosan/Poly(É›-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204
205	Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials, 2011, 32, 6089-6098.	11.4	33
206	Trophic Effects of Mesenchymal Stem Cells Increase Chondrocyte Proliferation and Matrix Formation. Tissue Engineering - Part A, 2011, 17, 1425-1436.	3.1	259
207	Model to Design Multilayer Tissue Engineering Scaffolds. Macromolecular Symposia, 2011, 309-310, 84-92.	0.7	2
208	An algorithm-based topographical biomaterials library to instruct cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16565-16570.	7.1	355
209	High-Throughput Assay for the Identification of Compounds Regulating Osteogenic Differentiation of Human Mesenchymal Stromal Cells. PLoS ONE, 2011, 6, e26678.	2.5	40
210	Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms., 2011, 21, 407-429.		415
211	The effect of PKC activation and inhibition on osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 329-339.	2.7	16
212	Timing, rather than the concentration of cyclic AMP, correlates to osteogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 356-365.	2.7	23
213	Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia, 2010, 6, 4208-4217.	8.3	339
214	Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials, 2010, 31, 8696-8705.	11.4	78
215	A link between the accumulation of DNA damage and loss of multiâ€potency of human mesenchymal stromal cells. Journal of Cellular and Molecular Medicine, 2010, 14, 2729-2738.	3.6	77
216	The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants. Journal of Biomedical Materials Research - Part A, 2010, 92A, 33-42.	4.0	42

#	Article	IF	CITATIONS
217	Relating cell proliferation to <i>in vivo</i> bone formation in porous Ca/P scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 92A, 303-310.	4.0	13
218	Fabrication of Bioactive Composite Scaffolds by Electrospinning for Bone Regeneration. Macromolecular Bioscience, 2010, 10, 1365-1373.	4.1	52
219	Comparison of two carbonated apatite ceramics in vivo. Acta Biomaterialia, 2010, 6, 2219-2226.	8.3	53
220	Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomaterialia, 2010, 6, 1968-1977.	8.3	276
221	The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials, 2010, 31, 2976-2989.	11.4	150
222	Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials, 2010, 31, 3103-3113.	11.4	268
223	The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Biomaterials, 2010, 31, 4322-4329.	11.4	29
224	Skeletal tissue engineering using embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 165-180.	2.7	45
225	Biomimetic calcium phosphate coatings on recombinant spider silk fibres. Biomedical Materials (Bristol), 2010, 5, 045002.	3.3	26
226	Effect of Chordin-Like 1 on MC3T3-E1 and Human Mesenchymal Stem Cells. Cells Tissues Organs, 2010, 191, 443-452.	2.3	17
227	Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13614-13619.	7.1	618
228	Clinical Application of Human Mesenchymal Stromal Cells for Bone Tissue Engineering. Stem Cells International, 2010, 2010, 1-12.	2.5	92
229	A Newly Developed Chemically Crosslinked Dextran–Poly(Ethylene Glycol) Hydrogel for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 565-573.	3.1	56
230	Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design. MRS Bulletin, 2010, 35, 584-590.	3.5	11
231	<i>In Vitro</i> and <i>In Vivo</i> Bioluminescent Imaging of Hypoxia in Tissue-Engineered Grafts. Tissue Engineering - Part C: Methods, 2010, 16, 479-485.	2.1	17
232	Enzymatically Crosslinked Dextran-Tyramine Hydrogels as Injectable Scaffolds for Cartilage Tissue Engineering - Part A, 2010, 16, 2429-2440.	3.1	122
233	Noninvasive Imaging of Bone-Specific Collagen I Expression in a Luciferase Transgenic Mouse Model. Tissue Engineering - Part C: Methods, 2010, 16, 1297-1304.	2.1	3
234	Microbioreactors for Raman Microscopy of Stromal Cell Differentiation. Analytical Chemistry, 2010, 82, 1844-1850.	6.5	22

#	Article	IF	CITATIONS
235	Calcium Phosphate Coated Electrospun Fiber Matrices as Scaffolds for Bone Tissue Engineering. Langmuir, 2010, 26, 7380-7387.	3.5	99
236	Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2010, 16, 1693-1702.	3.1	57
237	Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter, 2010, 6, 5080.	2.7	38
238	Goat Bone Tissue Engineering: Comparing an Intramuscular with a Posterolateral Lumbar Spine Location. Tissue Engineering - Part A, 2010, 16, 685-693.	3.1	5
239	cAMP/PKA Signaling Inhibits Osteogenic Differentiation and Bone Formation in Rodent Models. Tissue Engineering - Part A, 2009, 15, 2135-2143.	3.1	40
240	The Role of Collagen Crosslinking in Differentiation of Human Mesenchymal Stem Cells and MC3T3-E1 Cells. Tissue Engineering - Part A, 2009, 15, 3857-3867.	3.1	42
241	The Effect of Perfluorocarbon-Based Artificial Oxygen Carriers on Tissue-Engineered Trachea. Tissue Engineering - Part A, 2009, 15, 2471-2480.	3.1	28
242	The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 618-621.	3.3	66
243	Electrolytic deposition of lithium into calcium phosphate coatings. Dental Materials, 2009, 25, 353-359.	3. 5	30
244	Relevance of bone graft viability in a goat transverse process model. Journal of Orthopaedic Research, 2009, 27, 1055-1059.	2.3	11
245	Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering. Biomechanics and Modeling in Mechanobiology, 2009, 8, 499-507.	2.8	61
246	Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study. Journal of Tissue Engineering and Regenerative Medicine, 2009, 4, n/a-n/a.	2.7	36
247	Rapid prototyping of anatomically shaped, tissueâ€engineered implants for restoring congruent articulating surfaces in small joints. Cell Proliferation, 2009, 42, 485-497.	5.3	67
248	Gene expressions of Collagen type I, ALP and BMP-4 in osteo-inductive BCP implants show similar pattern to that of natural healing bones. Materials Science and Engineering C, 2009, 29, 1829-1834.	7.3	34
249	Tissue assembly and organization: Developmental mechanisms in microfabricated tissues. Biomaterials, 2009, 30, 4851-4858.	11.4	122
250	Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30, 2544-2551.	11.4	426
251	Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials, 2009, 30, 6228-6239.	11.4	97
252	Supply of Nutrients to Cells in Engineered Tissues. Biotechnology and Genetic Engineering Reviews, 2009, 26, 163-178.	6.2	149

#	Article	IF	CITATIONS
253	Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications. Biomacromolecules, 2009, 10, 1689-1696.	5.4	182
254	The Use of Endothelial Progenitor Cells for Prevascularized Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2015-2027.	3.1	103
255	Extracellular matrix and tissue engineering applications. Journal of Materials Chemistry, 2009, 19, 5474.	6.7	62
256	Quantifying <i>In Vitro </i> Growth and Metabolism Kinetics of Human Mesenchymal Stem Cells Using a Mathematical Model. Tissue Engineering - Part A, 2009, 15, 2653-2663.	3.1	51
257	The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials, 2008, 29, 3306-3316.	11.4	237
258	Comparative in vivo study of six hydroxyapatiteâ€based bone graft substitutes. Journal of Orthopaedic Research, 2008, 26, 1363-1370.	2.3	196
259	3D Fiberâ€Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation. Advanced Functional Materials, 2008, 18, 53-60.	14.9	180
260	Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials Science and Engineering Reports, 2008, 59, 38-71.	31.8	220
261	Trends in biomaterials research: An analysis of the scientific programme of the World Biomaterials Congress 2008. Biomaterials, 2008, 29, 3047-3052.	11.4	29
262	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	11.4	311
263	Cell based bone tissue engineering in jaw defects. Biomaterials, 2008, 29, 3053-3061.	11.4	191
264	Vascularization in tissue engineering. Trends in Biotechnology, 2008, 26, 434-441.	9.3	1,032
265	Analysis of the Dynamics of Bone Formation, Effect of Cell Seeding Density, and Potential of Allogeneic Cells in Cell-Based Bone Tissue Engineering in Goats. Tissue Engineering - Part A, 2008, 14, 1081-1088.	3.1	45
266	Endochondral bone tissue engineering using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6840-6845.	7.1	231
267	Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opinion on Drug Delivery, 2008, 5, 543-566.	5.0	58
268	Flexible fluidic microchips based on thermoformed and locally modified thin polymer films. Lab on A Chip, 2008, 8, 1570.	6.0	69
269	The Effect of Timing of Mechanical Stimulation on Proliferation and Differentiation of Goat Bone Marrow Stem Cells Cultured on Braided PLGA Scaffolds. Tissue Engineering - Part A, 2008, 14, 1425-1433.	3.1	26
270	Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 543-572.	3.5	185

#	Article	IF	CITATIONS
271	cAMP/PKA pathway activation in human mesenchymal stem cells <i>in vitro</i> results in robust bone formation <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7281-7286.	7.1	196
272	Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interactive Cardiovascular and Thoracic Surgery, 2008, 8, 27-30.	1.1	11
273	Potential of embryonic stem cells for <i>in vivo</i> bone regeneration. Regenerative Medicine, 2008, 3, 783-785.	1.7	8
274	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering - Part A, 2008, 14, 135-147.	3.1	54
275	Studying the Effect of Different Macrostructures on in vitro Cell Behaviour and in vivo Bone Formation Using a Tissue Engineering Approach. Novartis Foundation Symposium, 2008, 249, 148-169.	1.1	3
276	Regenerating Articular Tissue by Converging Technologies. PLoS ONE, 2008, 3, e3032.	2.5	35
277	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering, 2008, 14, 135-147.	4.6	4
278	Engineering vascularised tissues in vitro. , 2008, 15, 27-40.		147
279	Cell-Based Bone Tissue Engineering. PLoS Medicine, 2007, 4, e9.	8.4	263
280	Anatomical 3D Fiber-Deposited Scaffolds for Tissue Engineering: Designing a Neotrachea. Tissue Engineering, 2007, 13, 2483-2493.	4.6	35
281	Fabrication of Porous Ti ₆ Al ₄ V with Designed Structure by Rapid Prototyping Technology. Key Engineering Materials, 2007, 330-332, 1293-1296.	0.4	7
282	pDNA and Calcium Phosphate Co-Precipitation on Titanium Alloy Plate. Key Engineering Materials, 2007, 330-332, 621-624.	0.4	O
283	The Response of Human Mesenchymal Stem Cells to Osteogenic Signals and its Impact on Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2007, 2, 209-220.	1.3	59
284	Physicochemical Composition of Osteoporotic Bone in the Trichothiodystrophy Premature Aging Mouse Determined by Confocal Raman Microscopy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 34-40.	3.6	8
285	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2007, 13, 3-9.	4.6	158
286	Design of Biphasic Polymeric 3-Dimensional Fiber Deposited Scaffolds for Cartilage Tissue Engineering Applications. Tissue Engineering, 2007, 13, 361-371.	4.6	50
287	Finite Element Analysis of Meniscal Anatomical 3D Scaffolds: Implications for Tissue Engineering. Open Biomedical Engineering Journal, 2007, 1, 23-34.	0.5	26
288	Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Journal of Orthopaedic Research, 2007, 25, 1029-1041.	2.3	275

#	Article	IF	CITATIONS
289	Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials, 2007, 28, 1798-1805.	11.4	79
290	Tailored release of TGF- \hat{l}^21 from porous scaffolds for cartilage tissue engineering. International Journal of Pharmaceutics, 2007, 332, 80-89.	5.2	31
291	Co-culture in cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 170-178.	2.7	126
292	Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 2007, 28, 2810-2820.	11.4	349
293	Biological performance in goats of a porous titanium alloy–biphasic calcium phosphate composite. Biomaterials, 2007, 28, 4209-4218.	11.4	48
294	Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: a comparative raman microscopy study. International Journal of Nanomedicine, 2007, 2, 241-52.	6.7	4
295	Endothelial Cells Assemble into a 3-Dimensional Prevascular Network in a Bone Tissue Engineering Construct. Tissue Engineering, 2006, 12, 2685-2693.	4.6	302
296	Modulation of Chondrocyte Phenotype for Tissue Engineering by Designing the Biologicâ 'Polymer Carrier Interface. Biomacromolecules, 2006, 7, 3012-3018.	5.4	20
297	Cross-species Comparison of Ectopic Bone Formation in Biphasic Calcium Phosphate (BCP) and Hydroxyapatite (HA) Scaffolds. Tissue Engineering, 2006, 12, 1607-1615.	4.6	153
298	Converge and regenerate. Nature Materials, 2006, 5, 437-438.	27.5	7
299	A new in vivo screening model for posterior spinal bone formation: Comparison of ten calcium phosphate ceramic material treatments. Biomaterials, 2006, 27, 302-314.	11.4	44
300	The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 2006, 27, 1043-1053.	11.4	78
301	A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: In vivo bone formation showing proof of concept. Biomaterials, 2006, 27, 315-323.	11.4	165
302	Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 2006, 27, 1223-1235.	11.4	202
303	Bioluminescent imaging: Emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials, 2006, 27, 1851-1858.	11.4	43
304	Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials, 2006, 27, 4911-4922.	11.4	225
305	The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials, 2006, 27, 5099-5106.	11.4	67
306	Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials, 2006, 27, 5918-5926.	11.4	77

#	Article	IF	CITATIONS
307	Cancellous bone from porous T $\{i\}$ 6Al4V by multiple coating technique. Journal of Materials Science: Materials in Medicine, 2006, 17, 179-185.	3.6	27
308	3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, 2006, 27, 974-985.	11.4	452
309	Dual release of proteins from porous polymeric scaffolds. Journal of Controlled Release, 2006, 111, 95-106.	9.9	70
310	A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. Journal of Biomedical Materials Research - Part A, 2006, 78A, 139-147.	4.0	126
311	Osteoinduction by biomaterialsâ€"Physicochemical and structural influences. Journal of Biomedical Materials Research - Part A, 2006, 77A, 747-762.	4.0	264
312	Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis. Journal of Biomedical Materials Research - Part A, 2006, 78A, 605-614.	4.0	46
313	Online measurement of oxygen consumption by goat bone marrow stromal cells in a combined cell-seeding and proliferation perfusion bioreactor. Journal of Biomedical Materials Research - Part A, 2006, 79A, 338-348.	4.0	33
314	Evaluation of chondrogenesis within PEGT: PBT scaffolds with high PEG content. Journal of Biomedical Materials Research - Part A, 2006, 79A, 216-222.	4.0	11
315	Relevance of Osteoinductive Biomaterials in Critical-Sized Orthotopic Defect. Journal of Orthopaedic Research, 2006, 24, 867-876.	2.3	152
316	Performance of Osteoinductive Biphasic Calcium-Phosphate Ceramic in a Critical-sized Defect in Goats. Key Engineering Materials, 2006, 309-311, 1303-1306.	0.4	2
317	Biphasic Polymeric Shell-Core 3D Fiber Deposited Scaffolds Enhance Chondrocyte Differentiation. Materials Research Society Symposia Proceedings, 2006, 925, 1.	0.1	0
318	Differential Cell Viability of Chondrocytes and Progenitor Cells in Tissue-engineered Constructs Following Implantation into Osteochondral Defects. Tissue Engineering, 2006, 12, 1699-1709.	4.6	30
319	Inhibition of Histone Acetylation as a Tool in Bone Tissue Engineering. Tissue Engineering, 2006, 12, 2927-2937.	4.6	7 5
320	Predictive Value of In Vitro and In Vivo Assays in Bone and Cartilage Repair — What do They Really Tell Us about the Clinical Performance?. Advances in Experimental Medicine and Biology, 2006, 585, 327-360.	1.6	39
321	Cross-species Comparison of Ectopic Bone Formation in Biphasic Calcium Phosphate (BCP) and Hydroxyapatite (HA) Scaffolds. Tissue Engineering, 2006, .	4.6	1
322	Differential Cell Viability of Chondrocytes and Progenitor Cells in Tissue-engineered Constructs Following Implantation into Osteochondral Defects. Tissue Engineering, 2006, .	4.6	0
323	Inhibition of Histone Acetylation as a Tool in Bone Tissue Engineering. Tissue Engineering, 2006, .	4.6	0
324	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2006, .	4.6	1

#	Article	IF	Citations
325	Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International Journal of Nanomedicine, 2006, $1,317-32$.	6.7	276
326	Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005, 26, 23-36.	11.4	205
327	The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials, 2005, 26, 63-72.	11.4	218
328	3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 2005, 26, 3565-3575.	11.4	542
329	Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials, 2005, 26, 5231-5239.	11.4	103
330	Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005, 23, 879-884.	17.5	1,153
331	Synthetic scaffold morphology controls human dermal connective tissue formation. Journal of Biomedical Materials Research - Part A, 2005, 74A, 523-532.	4.0	79
332	A novel porous Ti6Al4V: Characterization and cell attachment. Journal of Biomedical Materials Research - Part A, 2005, 73A, 223-233.	4.0	131
333	Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties. Journal of Biomedical Materials Research - Part A, 2005, 75A, 957-965.	4.0	87
334	Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials, 2005, 26, 2479-2489.	11.4	151
335	Porous Ti6Al4V scaffolds directly fabricated by 3D fibre deposition technique: Effect of nozzle diameter. Journal of Materials Science: Materials in Medicine, 2005, 16, 1159-1163.	3.6	36
336	Polymer Scaffolds Fabricated with Pore-Size Gradients as a Model for Studying the Zonal Organization within Tissue-Engineered Cartilage Constructs. Tissue Engineering, 2005, 11, 1297-1311.	4.6	246
337	Parallel high-resolution confocal Raman SEM analysis of inorganic and organic bone matrix constituents. Journal of the Royal Society Interface, 2005, 2, 39-45.	3.4	29
338	Effect of Oxygen Tension on Adult Articular Chondrocytes in Microcarrier Bioreactor Culture. Tissue Engineering, 2004, 10, 987-994.	4.6	62
339	Bone Tissue Engineering for Spine Fusion: An Experimental Study on Ectopic and Orthotopic Implants in Rats. Tissue Engineering, 2004, 10, 231-239.	4.6	45
340	Tissue Engineering of Ligaments: A Comparison of Bone Marrow Stromal Cells, Anterior Cruciate Ligament, and Skin Fibroblasts as Cell Source. Tissue Engineering, 2004, 10, 893-903.	4.6	153
341	Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes11Supported by IsoTis S.A Osteoarthritis and Cartilage, 2004, 12, 306-313.	1.3	80
342	Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. Journal of Materials Science: Materials in Medicine, 2004, 15, 373-380.	3.6	149

#	Article	IF	CITATIONS
343	Factors having influence on the rheological properties of Ti6A14V slurry. Journal of Materials Science: Materials in Medicine, 2004, 15, 951-958.	3.6	18
344	Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. Journal of Materials Science: Materials in Medicine, 2004, 15, 1123-1128.	3.6	82
345	The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials, 2004, 25, 2987-2996.	11.4	83
346	Oxygen gradients in tissue-engineered Pegt/Pbt cartilaginous constructs: Measurement and modeling. Biotechnology and Bioengineering, 2004, 86, 9-18.	3.3	290
347	Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. Journal of Biomedical Materials Research Part B, 2004, 68A, 123-132.	3.1	161
348	Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications: Anin vivoevaluation. Journal of Biomedical Materials Research - Part A, 2004, 71A, 118-127.	4.0	19
349	Optimization of bone-tissue engineering in goats. Journal of Biomedical Materials Research Part B, 2004, 69B, 113-120.	3.1	45
350	Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 2004, 25, 4149-4161.	11.4	580
351	Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. Journal of Orthopaedic Research, 2004, 22, 544-551.	2.3	123
352	Genetic marking with the Î"LNGFR-gene for tracing goat cells in bone tissue engineering. Journal of Orthopaedic Research, 2004, 22, 697-702.	2.3	15
353	Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 2004, 25, 2901-2910.	11.4	165
354	The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials, 2004, 25, 5773-5780.	11.4	174
355	Stimulation of Skin Repair Is Dependent on Fibroblast Source and Presence of Extracellular Matrix. Tissue Engineering, 2004, 10, 1054-1064.	4.6	50
356	Raman Imaging of PLGA Microsphere Degradation Inside Macrophages. Journal of the American Chemical Society, 2004, 126, 13226-13227.	13.7	99
357	Effects of Wnt Signaling on Proliferation and Differentiation of Human Mesenchymal Stem Cells. Tissue Engineering, 2004, 10, 393-401.	4.6	258
358	Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone, 2004, 34, 818-826.	2.9	219
359	IMPROVED ENZYMATIC ISOLATION OF FIBROBLASTS FOR THE CREATION OF AUTOLOGOUS SKIN SUBSTITUTES. In Vitro Cellular and Developmental Biology - Animal, 2004, 40, 268.	1.5	33
360	Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Experimental Cell Research, 2004, 301, 179-188.	2.6	60

#	Article	IF	Citations
361	Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds1. Transplantation, 2004, 77, 359-365.	1.0	49
362	Osteogenicity of autologous bone transplants in the goat. Transplantation, 2004, 77, 504-509.	1.0	13
363	Expansion of Bovine Chondrocytes on Microcarriers Enhances Redifferentiation. Tissue Engineering, 2003, 9, 939-948.	4.6	133
364	Calcium phosphate interactions with titanium oxide and alumina substrates: an XPS study. Journal of Materials Science: Materials in Medicine, 2003, 14, 419-425.	3.6	38
365	Tissue engineering of dermal substitutes based on porous PEGT/PBT copolymer scaffolds: comparison of culture conditions. Journal of Materials Science: Materials in Medicine, 2003, 14, 235-240.	3.6	19
366	In vitroandin vivodegradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. Journal of Biomedical Materials Research - Part A, 2003, 64A, 378-387.	4.0	182
367	Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. Journal of Biomedical Materials Research - Part A, 2003, 66A, 779-788.	4.0	210
368	Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials, 2003, 24, 5153-5161.	11.4	125
369	Engineering of a Dermal Equivalent: Seeding and Culturing Fibroblasts in PEGT/PBT Copolymer Scaffolds. Tissue Engineering, 2003, 9, 909-917.	4.6	26
370	Viable Osteogenic Cells Are Obligatory for Tissue-Engineered Ectopic Bone Formation in Goats. Tissue Engineering, 2003, 9, 327-336.	4.6	193
371	Application and Limitations of Chloromethyl-benzamidodialkylcarbocyanine for Tracing Cells Used in Bone Tissue Engineering. Tissue Engineering, 2003, 9, 105-115.	4.6	50
372	Bone Formation by Mesenchymal Progenitor Cells Cultured on Dense and Microporous Hydroxyapatite Particles. Tissue Engineering, 2003, 9, 1179-1188.	4.6	63
373	Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Critical Reviews in Biotechnology, 2003, 23, 175-194.	9.0	109
374	Evaluation of Two Biodegradable Polymeric Systems as Substrates for Bone Tissue Engineering. Tissue Engineering, 2003, 9, 91-101.	4.6	59
375	Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Critical Reviews in Biotechnology, 2003, 23, 175-194.	9.0	68
376	Bone Tissue-Engineered Implants Using Human Bone Marrow Stromal Cells: Effect of Culture Conditions and Donor Age. Tissue Engineering, 2002, 8, 911-920.	4.6	194
377	Effect of fibroblasts on epidermal regeneration. British Journal of Dermatology, 2002, 147, 230-243.	1.5	263
378	Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials, 2002, 23, 1921-1930.	11.4	262

#	Article	IF	CITATIONS
379	Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium. Biomaterials, 2002, 23, 2211-2220.	11.4	236
380	A cultured living bone equivalent enhances bone formation when compared to a cell seeding approach. Journal of Materials Science: Materials in Medicine, 2002, 13, 575-581.	3.6	25
381	Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation. Journal of Materials Science: Materials in Medicine, 2002, 13, 1265-1269.	3.6	40
382	A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. Journal of Materials Science: Materials in Medicine, 2002, 13, 1271-1275.	3.6	196
383	Biomimetic Hydroxyapatite Coating on Metal Implants. Journal of the American Ceramic Society, 2002, 85, 517-522.	3.8	447
384	Scaffolds for Tissue Engineering of Cartilage. Critical Reviews in Eukaryotic Gene Expression, 2002, 12, 209-236.	0.9	116
385	Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials, 2001, 22, 2057-2064.	11.4	192
386	Bone induction by porous glass ceramic made from Bioglassi; $\frac{1}{2}$ (45S5). Journal of Biomedical Materials Research Part B, 2001, 58, 270-276.	3.1	201
387	The different behaviors of skeletal muscle cells and chondrocytes on PEGT/PBT block copolymers are related to the surface properties of the substrate. Journal of Biomedical Materials Research Part B, 2001, 54, 47-58.	3.1	45
388	Osteoclastic resorption of biomimetic calcium phosphate coatingsin vitro. Journal of Biomedical Materials Research Part B, 2001, 56, 208-215.	3.1	148
389	Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. Journal of Biomedical Materials Research Part B, 2001, 57, 327-335.	3.1	192
390	Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. Journal of Materials Science: Materials in Medicine, 2001, 12, 529-534.	3.6	149
391	Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. Journal of Materials Science: Materials in Medicine, 2001, 12, 761-766.	3.6	51
392	Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials, 2001, 22, 1911-1917.	11.4	175
393	Use of bone-bonding hydrogel copolymers in bone: Anin vitro andin vivo study of expanding PEO-PBT copolymers in goat femora., 2000, 49, 312-318.		30
394	Amphiphilic poly(ether ester amide) multiblock copolymers as biodegradable matrices for the controlled release of proteins. Journal of Biomedical Materials Research Part B, 2000, 52, 8-17.	3.1	37
395	Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. Journal of Controlled Release, 2000, 67, 249-260.	9.9	88
396	Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. Journal of Controlled Release, 2000, 67, 233-248.	9.9	70

#	Article	IF	Citations
397	Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) matrices. Journal of Controlled Release, 2000, 64, 179-192.	9.9	157
398	Control of protein delivery from amphiphilic poly(ether ester) multiblock copolymers by varying their water content using emulsification techniques. Journal of Controlled Release, 2000, 66, 307-320.	9.9	30
399	Effects of five different barrier materials on postsurgical adhesion formation in the rat. Human Reproduction, 2000, 15, 1358-1363.	0.9	117
400	Bone Induction by Implants Coated with Cultured Osteogenic Bone Marrow Cells. Advances in Dental Research, 1999, 13, 74-81.	3.6	82
401	Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. Journal of Materials Science: Materials in Medicine, 1999, 10, 773-777.	3.6	63
402	A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. Journal of Controlled Release, 1999, 62, 393-405.	9.9	92
403	Incorporation of bovine serum albumin in calcium phosphate coating on titanium., 1999, 46, 245-252.		119
404	Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive?) as substrate for human fibroblasts and keratinocytes. Journal of Biomedical Materials Research Part B, 1999, 47, 292-300.	3.1	59
405	Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3â°. Bone, 1999, 25, 107S-111S.	2.9	219
406	Critical Size Defect in the Goat's Os Ilium. Clinical Orthopaedics and Related Research, 1999, 364, 231-239.	1.5	83
407	Fast Formation of Biomimetic Ca-P Coatings on Ti6Al4V. Materials Research Society Symposia Proceedings, 1999, 599, 135.	0.1	18
408	Evaluation of copolymers of polyethylene oxide and polybutylene terephthalate (polyactive): mechanical behaviour. Journal of Materials Science: Materials in Medicine, 1998, 9, 375-379.	3.6	28
409	Polyacids as bonding agents in hydroxyapatite polyester-ether (Polyactive 30/70) composites. Journal of Materials Science: Materials in Medicine, 1998, 9, 23-30.	3.6	68
410	The polymer Polyactive as a bone-filling substance: an experimental study in rabbits. Journal of Materials Science: Materials in Medicine, 1998, 9, 449-455.	3.6	18
411	In vivo bone formation by human bone marrow cells: effect of osteogenic culture supplements and cell densities. Journal of Materials Science: Materials in Medicine, 1998, 9, 855-858.	3.6	41
412	Bone tissue engineering on calcium phosphate-coated titanium plates utilizing cultured rat bone marrow cells: a preliminary study. Journal of Materials Science: Materials in Medicine, 1998, 9, 859-863.	3.6	18
413	Editorial. Journal of Materials Science: Materials in Medicine, 1998, 9, 673-674.	3.6	0
414	Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles. , 1998, 40, 257-263.		79

#	Article	IF	CITATIONS
415	A study on the grafting reaction of isocyanates with hydroxyapatite particles. , 1998, 40, 358-364.		78
416	Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix., 1998, 40, 490-497.		97
417	Decreased consumption of Ca and P duringin vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. , 1998, 42, 199-212.		28
418	Effects of AISI 316L corrosion products in in vitro bone formation. Biomaterials, 1998, 19, 999-1007.	11.4	47
419	Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19, 1067-1072.	11.4	187
420	Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer. Wound Repair and Regeneration, 1998, 6, 556-568.	3.0	55
421	Flexible (Polyactive $\hat{A}^{@}$) versus rigid (hydroxyapatite) dental implants. International Journal of Oral and Maxillofacial Surgery, 1997, 26, 135-140.	1.5	14
422	In vitro biocompatibility of EPM and EPDM rubbers. Journal of Materials Science: Materials in Medicine, 1997, 8, 5-9.	3.6	4
423	Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials, 1997, 18, 1263-1270.	11.4	108
424	The bone-bonding polymer Polyactive $\rlap{1}/2$ 80/20 induces hydroxycarbonate apatite formation in vitro. , 1997, 34, 79-86.		45
425	Assessment of bioactivity for orthopedic coatings in a gap-healing model. , 1997, 36, 265-273.		29
426	A comparative study of flexible (Polyactive \hat{A}°) versus rigid (hydroxylapatite) permucosal dental implants. I. Clinical aspects. Journal of Oral Rehabilitation, 1997, 24, 85-92.	3.0	4
427	Application of porous PEO/PBT copolymers for bone replacement. , 1996, 30, 341-351.		65
428	Inhibition and stimulation of enzymatic activities of human fibroblasts by corrosion products and metal salts. Journal of Materials Science: Materials in Medicine, 1996, 7, 77-83.	3.6	7
429	Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite. Journal of Materials Science: Materials in Medicine, 1996, 7, 551-557.	3 . 6	87
430	Initial bone matrix formation at the hydroxyapatite interface <i>in vivo</i> . Journal of Biomedical Materials Research Part B, 1995, 29, 89-99.	3.1	136
431	Biocompatibility of wear-resistant coatings in orthopaedic surgery in vitro testing with human fibroblast cell cultures. Journal of Materials Science: Materials in Medicine, 1995, 6, 80-84.	3.6	36
432	Preventing postoperative intraperitoneal adhesion formation with Polyactiveâ,,¢, a degradable copolymer acting as a barrier. Journal of Materials Science: Materials in Medicine, 1995, 6, 41-45.	3.6	22

#	Article	IF	CITATIONS
433	Degradation and calcification of a PEO/PBT copolymer series. Journal of Materials Science: Materials in Medicine, 1995, 6, 510-517.	3.6	18
434	Observations of the bone activity adjacent to unloaded dental implants coated with Polyactive \hat{A}^{\otimes} or HA. Journal of Oral Rehabilitation, 1995, 22, 167-174.	3.0	11
435	Quantitative analysis of the inflammatory reaction surrounding sutures commonly used in operative procedures and the relation to postsurgical adhesion formation. Biomaterials, 1995, 16, 1283-1289.	11.4	39
436	Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials, 1995, 16, 507-513.	11.4	23
437	Effect of HA-1A Monoclonal IGM Antibody on Endotoxin-Induced Proliferation of Cultured Rat Middle Ear Epithelium. Annals of Otology, Rhinology and Laryngology, 1995, 104, 226-230.	1.1	3
438	A Semiquantitative Rat Model for Intraperitoneal Postoperative Adhesion Formation. Gynecologic and Obstetric Investigation, 1994, 37, 99-105.	1.6	21
439	Abundant postoperative calcification of an elastomer: matrix calcium phosphate-polymer composite for bone reconstruction. Journal of Materials Science: Materials in Medicine, 1994, 5, 320-325.	3.6	11
440	Applying a calcium phosphate layer on PEO/PBT copolymers affects bone formation in vivo. Journal of Materials Science: Materials in Medicine, 1994, 5, 424-428.	3.6	10
441	Gene expression and protein activity in bone-bonding and non-bonding PEO/PBT copolymers. Journal of Materials Science: Materials in Medicine, 1994, 5, 582-586.	3.6	3
442	Pre-operative addition of calcium ions or calcium phosphate crystals to PEO/PBT copolymers (Polyactiveâ,,¢) stimulates bone mineralization in vitro. Journal of Materials Science: Materials in Medicine, 1994, 5, 695-701.	3.6	8
443	Osteoinduction within PEO/PBT copolymer implants in cranial defects using demineralized bone matrix. Journal of Materials Science: Materials in Medicine, 1994, 5, 764-769.	3.6	12
444	The use of gas plasma treatment to improve the cell-substrate properties of a skin substitute made of poly(ether)/poly(ester) copolymers. Journal of Materials Science: Materials in Medicine, 1994, 5, 1-6.	3.6	12
445	Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions. Journal of Biomedical Materials Research Part B, 1994, 28, 105-112.	3.1	73
446	Interface reactions to PEO/PBT copolymers (polyactive \hat{A}^{\otimes}) after implantation in cortical bone. Journal of Biomedical Materials Research Part B, 1994, 28, 141-151.	3.1	64
447	Interfacial behavior of PEO/PBT copolymers (polyactive \hat{A}^{o}) in a calvarial system: Anin vitro study. Journal of Biomedical Materials Research Part B, 1994, 28, 269-277.	3.1	26
448	Biocompatibility of a biodegradable matrix used as a skin substitute: Anin vivo evaluation. Journal of Biomedical Materials Research Part B, 1994, 28, 545-552.	3.1	116
449	Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. Biomaterials, 1994, 15, 543-550.	11.4	148
450	Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study. Biomaterials, 1994, 15, 551-559.	11.4	70

#	Article	IF	CITATIONS
451	Evaluation of polylactide monomers in an in vitro biocompatibility assay. Biomaterials, 1994, 15, 251-256.	11.4	37
452	Hydroxylapatite/poly(L-lactide) composites: An animal study on push-out strengths and interface histology. Journal of Biomedical Materials Research Part B, 1993, 27, 433-444.	3.1	122
453	A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: A physico-chemical characterisation. Clinical Materials, 1993, 14, 21-27.	0.5	38
454	Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. Biomaterials, 1993, 14, 598-604.	11.4	82
455	In vitro biocompatibility testing of polylactides. Journal of Materials Science: Materials in Medicine, 1993, 4, 213-218.	3.6	15
456	Culture of Middle Ear Epithelium: A review. Acta Oto-Laryngologica, 1993, 113, 75-79.	0.9	9
457	Analysis of Primary Bone Formation in Porous Alumina: A Fluorescence and Scanning Electron Microscopic Study of Marrow Cell Induced Osteogenesis. Bio-Medical Materials and Engineering, 1992, 2, 191-201.	0.6	5
458	In vitro biocompatibility testing of polylactides Part I Proliferation of different cell types. Journal of Materials Science: Materials in Medicine, 1992, 3, 365-370.	3.6	52
459	Cellular reaction on the intraperitoneal injection of four types of polylactide particulates. Biomaterials, 1992, 13, 819-824.	11.4	19
460	Evaluation of hydroxylapatite/poly(l-lactide) composites: Mechanical behavior. Journal of Biomedical Materials Research Part B, 1992, 26, 1277-1296.	3.1	177
461	The ultrastructure of the boneâ€hydroxyapatite interface <i>in vitro</i> . Journal of Biomedical Materials Research Part B, 1992, 26, 1365-1382.	3.1	119
462	Effect of vitamin A on the growth and differentiation of rat external auditory canal epithelium in organ culture. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 1991, 12, 67-75.	1.3	11
463	Primary Culture of Chinchilla Middle Ear Epithelium. Annals of Otology, Rhinology and Laryngology, 1991, 100, 774-782.	1.1	20
464	Ultrastructure of the Mineralized Tissue/Calcium Phosphate Interface in Vitro. Materials Research Society Symposia Proceedings, 1991, 252, 63.	0.1	1
465	Reactions of cells at implant surfaces. Biomaterials, 1991, 12, 187-193.	11.4	52
466	Serial Culture and Characterization of the Chinchilla Middle Ear Epithelium. Annals of Otology, Rhinology and Laryngology, 1991, 100, 1024-1031.	1.1	17
467	Study of the Bone-Biomaterial Interface Reactions in an in Vitro Bone Forming System: A Preliminary Report., 1991,, 420-429.		4
468	New alloplastic tympanic membrane material. The American Journal of Otology, 1991, 12, 329-35.	0.4	11

#	Article	IF	CITATIONS
469	The effect of external stimuli on cultured rat middle ear epithelium: I.Extra cellular calcium concentration. Acta Oto-Laryngologica, 1990, 109, 101-110.	0.9	3
470	Tissue/biomaterial interface characteristics of four elastomers. A transmission electron microscopical study. Journal of Biomedical Materials Research Part B, 1990, 24, 277-293.	3.1	45
471	The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants. Journal of Biomedical Materials Research Part B, 1990, 24, 433-453.	3.1	120
472	Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. Journal of Biomedical Materials Research Part B, 1990, 24, 489-515.	3.1	68
473	The behavior of alloplastic tympanic membranes inStaphylococcus aureus-induced middle ear infection. I. Quantitative biocompatibility evaluation. Journal of Biomedical Materials Research Part B, 1990, 24, 669-688.	3.1	16
474	The behavior of alloplastic tympanic membranes inStaphlococcus aureus-induced middle ear infection. II. Morphological study of epithelial reactions. Journal of Biomedical Materials Research Part B, 1990, 24, 809-828.	3.1	6
475	The Effect of External Stimuli on Rat Middle Ear Epithelium in Culture. Acta Oto-Laryngologica, 1990, 109, 431-437.	0.9	3
476	Cytokeratin Patterns of Tissues Related to Cholesteatoma Pathogenesis. Annals of Otology, Rhinology and Laryngology, 1989, 98, 635-640.	1.1	19
477	Tympanic Membrane Structure during aStaphylococcus Aureus-induced. Middle Ear Infection:A Study in the Rat Middle Ear. Acta Oto-Laryngologica, 1989, 107, 225-234.	0.9	14
478	Biodegradation-Dependent Trace Element Accumulation: A Study on Calcium Phosphate Ceramics and Polymers., 1989,, 110-119.		1
479	Biodegradation and Phagocyte/Polymer Interaction. , 1989, , 102-109.		1
480	Biocompatibility of six elastomersin vitro. Journal of Biomedical Materials Research Part B, 1988, 22, 423-439.	3.1	36
481	Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. Biomaterials, 1988, 9, 14-23.	11.4	81
482	Cytokeratin Expression in Cholesteatoma Matrix, Meatal Epidermis and Middle Ear Epithelium: A Preliminary Report. Acta Oto-Laryngologica, 1988, 105, 529-532.	0.9	13
483	Primary 'Acquired and Recurrent CholesteatomaversusResidual Cholesteatoma: A Light- and Electron-microscopical Study. Acta Oto-Laryngologica, 1988, 106, 321-330.	0.9	10
484	Hydroxyapatite Ceramic as Middle Ear Implant Material: Animal Experimental Results. Annals of Otology, Rhinology and Laryngology, 1986, 95, 1-5.	1.1	26
485	Culture and Characterization of Rat Middle-ear Epithelium. Acta Oto-Laryngologica, 1986, 101, 453-466.	0.9	53
486	The biological performance of calcium phosphate ceramics in an infected implantation site: I. Biological performance of hydroxyapatite duringStaphylococcus aureus infection. Journal of Biomedical Materials Research Part B, 1986, 20, 989-1002.	3.1	26

#	Article	IF	CITATIONS
487	The biological performance of calcium phosphate ceramics in an infected implantation site: II. Biological evaluation of hydroxyapatite during short-term infection. Journal of Biomedical Materials Research Part B, 1986, 20, 1003-1015.	3.1	20
488	The biological performance of calcium phosphate ceramics in an infected implantation site III: Biological performance of ?-whitlockite in the noninfected and infected rat middle ear. Journal of Biomedical Materials Research Part B, 1986, 20, 1197-1217.	3.1	29
489	Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials, 1986, 7, 137-143.	11.4	195
490	Epithelial Reactions to Hydroxyapatite: <i>An in Vivo and in Vitro Study</i> . Acta Oto-Laryngologica, 1986, 101, 231-241.	0.9	21
491	Bioreactions at the tissue/ hydroxyapatite interface. Biomaterials, 1985, 6, 243-251.	11.4	171
492	Acute Otitis Media: An Animal Experimental Study. Acta Oto-Laryngologica, 1984, 98, 239-249.	0.9	27
493	Hydroxyapatite in the Infected Middle Ear. , 1984, , 93-104.		9
494	Heterogeneity of concanavalin A binding by mouse peritoneal macrophages. Histochemistry, 1982, 74, 301-307.	1.9	12
495	High-content imaging., 0,, 85-100.		0
496	Introducing materiomics., 0,, 1-12.		0
497	Microfabrication techniques in materiomics. , 0, , 51-66.		0
498	Bioassay development. , 0, , 67-84.		0
499	Comparison of Porous Ti ₆ Al ₄ V Made by Sponge Replication and Directly 3D Fiber Deposition and Cancellous Bone. Key Engineering Materials, 0, 330-332, 999-1002.	0.4	7
500	Computational analysis of high-throughput material screens. , 0, , 101-132.		0
501	Methodological approaches in aggregate formation and microscopic analysis to assess pseudoislet morphology and cellular interactions. Open Research Europe, 0, 2, 87.	2.0	0