
Ernesto Yagüe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8316138/publications.pdf Version: 2024-02-01

EDNESTO YACÃI/E

#	Article	IF	CITATIONS
1	FOXA1 is a determinant of drug resistance in breast cancer cells. Breast Cancer Research and Treatment, 2021, 186, 317-326.	2.5	12
2	MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochemical Pharmacology, 2021, 192, 114692.	4.4	12
3	TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers, 2020, 12, 3862.	3.7	10
4	Novel Copper Complexes That Inhibit the Proteasome and Trigger Apoptosis in Triple-Negative Breast Cancer Cells. ACS Medicinal Chemistry Letters, 2019, 10, 1328-1335.	2.8	24
5	Studies of proteasome inhibition and apoptosis induction in tripleâ€negative breast cancer cells by novel amino acid–polypyridine–copper complex. Applied Organometallic Chemistry, 2019, 33, e5120.	3.5	3
6	EP300 and SIRT1/6 Co-Regulate Lapatinib Sensitivity Via Modulating FOXO3-Acetylation and Activity in Breast Cancer. Cancers, 2019, 11, 1067.	3.7	29
7	Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells. Nanoscale, 2019, 11, 12858-12870.	5.6	39
8	Oncogenic EP300 can be targeted with inhibitors of aldo-keto reductases. Biochemical Pharmacology, 2019, 163, 391-403.	4.4	5
9	Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. Journal of Clinical Medicine, 2019, 8, 348.	2.4	23
10	GGNBP2 suppresses triple-negative breast cancer aggressiveness through inhibition of IL-6/STAT3 signaling activation. Breast Cancer Research and Treatment, 2019, 174, 65-78.	2.5	18
11	Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Letters, 2018, 423, 47-59.	7.2	53
12	Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Research and Treatment, 2017, 163, 461-474.	2.5	64
13	Ruanjian Sanjie decoction exhibits antitumor activity by inducing cell apoptosis in breast cancer. Oncology Letters, 2017, 13, 3071-3079.	1.8	20
14	miR-106b~25 cluster regulates multidrug resistance in an ABC transporter-independent manner via downregulation of EP300. Oncology Reports, 2016, 35, 1170-1178.	2.6	22
15	Structural insight into the <scp>TRIAP</scp> 1/ <scp>PRELI</scp> â€like domain family of mitochondrial phospholipid transfer complexes. EMBO Reports, 2015, 16, 824-835.	4.5	68
16	Apoptosis inhibitor TRIAP1 is a novel effector of drug resistance. Oncology Reports, 2015, 34, 415-422.	2.6	33
17	miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Research and Treatment, 2015, 151, 269-280.	2.5	80
18	Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Research and Treatment, 2014, 143, 287-299.	2.5	36

Ernesto Yagüe

#	Article	IF	CITATION
19	Loss of O6-methylguanine-DNA methyltransferase confers collateral sensitivity to carmustine in topoisomerase II-mediated doxorubicin resistant triple negative breast cancer cells. Biochemical Pharmacology, 2013, 85, 186-196.	4.4	31
20	Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16558-16563.	7.1	71
21	Escape from stress granule sequestration: another way to drug resistance?. Biochemical Society Transactions, 2010, 38, 1537-1542.	3.4	12
22	Ability to Acquire Drug Resistance Arises Early during the Tumorigenesis Process. Cancer Research, 2007, 67, 1130-1137.	0.9	53
23	Role of the highly structured 5′-end region of <i>MDR1</i> mRNA in P-glycoprotein expression. Biochemical Journal, 2007, 406, 445-455.	3.7	26
24	Activation of the MDR1 Upstream Promoter in Breast Carcinoma as a Surrogate for Metastatic Invasion. Clinical Cancer Research, 2004, 10, 2776-2783.	7.0	43
25	P-glycoprotein (MDR1) Expression in Leukemic Cells Is Regulated at Two Distinct Steps, mRNA Stabilization and Translational Initiation. Journal of Biological Chemistry, 2003, 278, 10344-10352.	3.4	112