List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8314697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Respiratory Emergency Department Visit Associations with Exposures to Fine Particulate Matter Mass, Constituents, and Sources in Dhaka, Bangladesh Air Pollution. Annals of the American Thoracic Society, 2022, 19, 28-38.	3.2	3
2	Bioaccumulation of perfluoroalkyl substances in a Lake Ontario food web. Journal of Great Lakes Research, 2022, 48, 315-325.	1.9	17
3	The detection of SARS-CoV-2 RNA in indoor air of dental clinics during the COVID-19 pandemic. Environmental Science and Pollution Research, 2022, 29, 85586-85594.	5.3	11
4	Effects of ambient air pollutants on hospital admissions and deaths for cardiovascular diseases: a time series analysis in Tehran. Environmental Science and Pollution Research, 2022, 29, 17997-18009.	5.3	6
5	Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China. Environment International, 2022, 158, 106979.	10.0	31
6	Introduction to Particles in Indoor Air. , 2022, , 1-13.		1
7	Prediction of COVID-19 Cases from the Nexus of Air Quality and Meteorological Phenomena: Bangladesh Perspective. Earth Systems and Environment, 2022, 6, 307-325.	6.2	7
8	Human exposure to aerosol from indoor gas stove cooking and the resulting nervous system responses. Indoor Air, 2022, 32, .	4.3	11
9	Changing Emissions Results in Changed PM2.5 Composition and Health Impacts. Atmosphere, 2022, 13, 193.	2.3	8
10	Long-term PM2.5 source analyses in New York City from the perspective of dispersion normalized PMF. Atmospheric Environment, 2022, 272, 118949.	4.1	18
11	Source apportionment of particle number concentrations: A global review. Science of the Total Environment, 2022, 819, 153104.	8.0	25
12	Bioaccumulation of polyfluoroalkyl substances in the Lake Huron aquatic food web. Science of the Total Environment, 2022, 819, 152974.	8.0	17
13	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics, 2022, 22, 3067-3096.	4.9	40
14	Source apportionment of PM2.5 in Seoul, South Korea and Beijing, China using dispersion normalized PMF. Science of the Total Environment, 2022, 833, 155056.	8.0	48
15	Improved positive matrix factorization for source apportionment of volatile organic compounds in vehicular emissions during the Spring Festival in Tianjin, China. Environmental Pollution, 2022, 303, 119122.	7.5	15
16	Development and evaluation of an integrated method using distance- and probability-based profile matching approaches in receptor modeling. Atmospheric Pollution Research, 2022, 13, 101423.	3.8	1
17	The air quality of Palangka Raya, Central Kalimantan, Indonesia: The impacts of forest fires on visibility. Journal of the Air and Waste Management Association, 2022, 72, 1191-1200.	1.9	2
18	Evaluation of impact of "2+26″ regional strategies on air quality improvement of different functional districts in Beijing based on a long-term field campaign. Environmental Research, 2022, 212, 113452.	7.5	7

#	Article	IF	CITATIONS
19	Process to Reduce Particulate Matter in Ambient Air Using Bubbles of Sodium Palmitate. Chemical Engineering and Technology, 2022, 45, 1497-1500.	1.5	3
20	Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. Environment International, 2022, 165, 107330.	10.0	24
21	Long-term trends of ultrafine and fine particle number concentrations in New York State: Apportioning between emissions and dispersion. Environmental Pollution, 2022, 310, 119797.	7.5	10
22	Local and transboundary impacts of PM2.5 sources identified in Seoul during the early stage of the COVID-19 outbreak. Atmospheric Pollution Research, 2022, 13, 101510.	3.8	7
23	Tropical Air Chemistry in Lagos, Nigeria. Atmosphere, 2022, 13, 1059.	2.3	0
24	Using the carbon balance method based on fuel-weighted average concentrations to estimate emissions from household coal-fired heating stoves. Chemosphere, 2022, 307, 135639.	8.2	2
25	Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. Environmental Pollution, 2021, 268, 115926.	7.5	16
26	Neurodegenerative hospital admissions and long-term exposure to ambient fine particle air pollution. Annals of Epidemiology, 2021, 54, 79-86.e4.	1.9	15
27	The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove. Science of the Total Environment, 2021, 750, 141334.	8.0	12
28	Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM2.5 in an urban environment. Science of the Total Environment, 2021, 761, 143225.	8.0	25
29	COVID-19 pandemic in Wuhan: Ambient air quality and the relationships between criteria air pollutants and meteorological variables before, during, and after lockdown. Atmospheric Research, 2021, 250, 105362.	4.1	77
30	Mortality burden attributable to long-term ambient PM2.5 exposure in China: using novel exposure-response functions with multiple exposure windows. Atmospheric Environment, 2021, 246, 118098.	4.1	13
31	Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Science of the Total Environment, 2021, 759, 143548.	8.0	39
32	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	10.0	54
33	Multiple Air Quality Monitoring Evidence of the Impacts of Large-scale Social Restrictions during the COVID-19 Pandemic in Jakarta, Indonesia. Aerosol and Air Quality Research, 2021, 21, 200645.	2.1	7
34	Measuring Particle Concentrations and Composition in Indoor Air. , 2021, , 1-51.		0
35	Airborne particulate matter in Tehran's ambient air. Journal of Environmental Health Science & Engineering, 2021, 19, 1179-1191.	3.0	7
36	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. Aerosol and Air Quality Research, 2021, 21, 200567.	2.1	20

#	Article	IF	CITATIONS
37	Spatial-temporal Variation and Local Source Identification of Air Pollutants in a Semi-urban Settlement in Nigeria Using Low-cost Sensors. Aerosol and Air Quality Research, 2021, 21, 200598.	2.1	12
38	E-Cigarettes and Cardiopulmonary Health. Function, 2021, 2, zqab004.	2.3	36
39	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. Global Biogeochemical Cycles, 2021, 35, e2020GB006787.	4.9	12
40	Approaches to reducing rotational ambiguity in receptor modeling of ambient particulate matter. Chemometrics and Intelligent Laboratory Systems, 2021, 210, 104252.	3.5	5
41	Health and charge benefits from decreasing PM2.5 concentrations in New York State: Effects of changing compositions. Atmospheric Pollution Research, 2021, 12, 47-53.	3.8	9
42	Presence of SARS-CoV-2 in the air of public places and transportation. Atmospheric Pollution Research, 2021, 12, 302-306.	3.8	60
43	Theoretical equilibration time is supported by measurement study of residence time at dilution sampling on fine particulate matter emissions from household biofuel burning. Chemosphere, 2021, 267, 129178.	8.2	8
44	Nontargeted Discovery of Novel Contaminants in the Great Lakes Region: A Comparison of Fish Fillets and Fish Consumers. Environmental Science & amp; Technology, 2021, 55, 3765-3774.	10.0	26
45	Recent advances in air pollution mixture resolutions. Microchemical Journal, 2021, 163, 105907.	4.5	3
46	A systematic review and meta-analysis of human biomonitoring studies on exposure to environmental pollutants in Iran. Ecotoxicology and Environmental Safety, 2021, 212, 111986.	6.0	8
47	Cardiovascular morbidity and mortality associations with biomass- and fossil-fuel-combustion fine-particulate-matter exposures in Dhaka, Bangladesh. International Journal of Epidemiology, 2021, 50, 1172-1183.	1.9	13
48	Relationship between ambient black carbon and daily mortality in Tehran, Iran: a distributed lag nonlinear time series analysis. Journal of Environmental Health Science & Engineering, 2021, 19, 907-916.	3.0	3
49	Why it makes sense that increased PM _{2.5} was correlated with anthropogenic combustion-derived water. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
50	Assessment of BTEX exposure and carcinogenic risks for mail carriers in Tehran, Iran. Air Quality, Atmosphere and Health, 2021, 14, 1365-1373.	3.3	2
51	An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. Environmental Research, 2021, 195, 110898.	7.5	62
52	Spring Festival and COVIDâ€19 Lockdown: Disentangling PM Sources in Major Chinese Cities. Geophysical Research Letters, 2021, 48, e2021GL093403.	4.0	40
53	Fractal Analysis and Interpretation of Temporal Patterns of TSP and PM10 Mass Concentration over Tarkwa, Ghana. Earth Systems and Environment, 2021, 5, 635-654.	6.2	5
54	Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environmental Research, 2021, 198, 111186.	7.5	36

#	Article	IF	CITATIONS
55	Trends (2005–2016) of perfluoroalkyl acids in top predator fish of the Laurentian Great Lakes. Science of the Total Environment, 2021, 778, 146151.	8.0	12
56	Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF). Atmospheric Environment, 2021, 259, 118503.	4.1	13
57	The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Scientific Reports, 2021, 11, 19436.	3.3	7
58	Evaluation of regional transport of PM2.5 during severe atmospheric pollution episodes in the western Yangtze River Delta, China. Journal of Environmental Management, 2021, 293, 112827.	7.8	19
59	Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning. Environmental Pollution, 2021, 286, 117252.	7.5	25
60	Air quality in Canadian port cities after regulation of low-sulphur marine fuel in the North American Emissions Control Area. Science of the Total Environment, 2021, 791, 147949.	8.0	35
61	Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF. Environmental Pollution, 2021, 286, 117576.	7.5	23
62	Forecasting PM2.5 concentration using artificial neural network and its health effects in Ahvaz, Iran. Chemosphere, 2021, 283, 131285.	8.2	51
63	Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh. Environmental Pollution, 2021, 290, 118073.	7.5	12
64	Effect of short-term exposure to air pollution on COVID-19 mortality and morbidity in Iranian cities. Journal of Environmental Health Science & Engineering, 2021, 19, 1807-1816.	3.0	11
65	Characterization of Halogenated Organic Compounds in Pelagic Sharks and Sea Turtles Using a Nontargeted Approach. Environmental Science & Technology, 2021, 55, 16390-16401.	10.0	10
66	Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state. Environmental Monitoring and Assessment, 2021, 193, 790.	2.7	5
67	Influence of transboundary air pollution and meteorology on air quality in three major cities of Anhui Province, China. Journal of Cleaner Production, 2021, 329, 129641.	9.3	15
68	A DFT screening of magnetic sensing-based adsorption of NO by M-MOF-74 (M= Mg, Ti, Fe and Zn). Materials Chemistry and Physics, 2020, 239, 122105.	4.0	8
69	Changes in the hospitalization and ED visit rates for respiratory diseases associated with source-specific PM2.5 in New York State from 2005 to 2016. Environmental Research, 2020, 181, 108912.	7.5	33
70	Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmospheric Environment: X, 2020, 5, 100053.	1.4	41
71	Environmental Chemometrics. , 2020, , 69-85.		0
72	PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmospheric Research, 2020, 237, 104833.	4.1	34

#	Article	IF	CITATIONS
73	Wintertime Wood Smoke, Traffic Particle Pollution, and Preeclampsia. Hypertension, 2020, 75, 851-858.	2.7	20
74	The effect of the decreasing level of Urmia Lake on particulate matter trends and attributed health effects in Tabriz, Iran. Microchemical Journal, 2020, 153, 104434.	4.5	23
75	Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. Science of the Total Environment, 2020, 704, 135287.	8.0	41
76	Elemental and magnetic analyses, source identification, and oxidative potential of airborne, passive, and street dust particles in Asaluyeh County, Iran. Science of the Total Environment, 2020, 707, 136132.	8.0	26
77	Evaluation of urban ozone in the Brahmaputra River Valley. Atmospheric Pollution Research, 2020, 11, 610-618.	3.8	6
78	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	10.0	106
79	Associations between Source-Specific Particulate Matter and Respiratory Infections in New York State Adults. Environmental Science & Technology, 2020, 54, 975-984.	10.0	77
80	Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories. Environmental Pollution, 2020, 266, 115268.	7.5	57
81	Forecasting Ambient Air Pollutants in Tehran, Iran. Environmental Justice, 2020, 13, 193-201.	1.5	2
82	Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmospheric Pollution Research, 2020, 11, 2215-2225.	3.8	16
83	Metal nanoparticles in the air: state of the art and future perspectives. Environmental Science: Nano, 2020, 7, 3233-3254.	4.3	14
84	PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Science of the Total Environment, 2020, 744, 140984.	8.0	123
85	Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM _{2.5} after the COVID-19 Outbreak. Environmental Science & Technology, 2020, 54, 9917-9927.	10.0	126
86	Association of short-term exposure to air pollution with mortality in a middle eastern tourist city. Air Quality, Atmosphere and Health, 2020, 13, 1223-1234.	3.3	6
87	Nontargeted Screening of Halogenated Organic Compounds in Fish Fillet Tissues from the Great Lakes. Environmental Science & Technology, 2020, 54, 15035-15045.	10.0	20
88	Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM2.5 in Los Angeles, 2005 to 2016. Environmental Research, 2020, 190, 109967.	7.5	16
89	Decadal Differences in Emerging Halogenated Contaminant Profiles in Great Lakes Top Predator Fish. Environmental Science & Technology, 2020, 54, 14352-14360.	10.0	12
90	SO2 and HCHO over the major cities of Kazakhstan from 2005 to 2016: influence of political, economic and industrial changes. Scientific Reports, 2020, 10, 12635.	3.3	9

#	Article	IF	CITATIONS
91	The Aitken counter: Revisiting its design and performance characteristics. Aerosol Science and Technology, 2020, 54, 999-1006.	3.1	3
92	Improving apportionment of PM2.5 using multisite PMF by constraining G-values with a prioriinformation. Science of the Total Environment, 2020, 736, 139657.	8.0	21
93	Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh. Environmental Pollution, 2020, 264, 114798.	7.5	39
94	Light Absorption Properties of Organic Aerosol from Wood Pyrolysis: Measurement Method Comparison and Radiative Implications. Environmental Science & Technology, 2020, 54, 7156-7164.	10.0	17
95	Traffic-related metrics and adverse birth outcomes: A systematic review and meta-analysis. Environmental Research, 2020, 188, 109752.	7.5	9
96	Carcinogenic risks of particulate matter during Middle Eastern dust events and normal days. Atmospheric Pollution Research, 2020, 11, 1566-1571.	3.8	6
97	Ozone pollution in the west China rain zone and its adjacent regions, Southwestern China: Concentrations, ecological risk, and Sources. Chemosphere, 2020, 256, 127008.	8.2	16
98	Global review of recent source apportionments for airborne particulate matter. Science of the Total Environment, 2020, 740, 140091.	8.0	167
99	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. Atmospheric Chemistry and Physics, 2020, 20, 409-429.	4.9	24
100	Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry. Environmental Science and Pollution Research, 2020, 27, 38631-38643.	5.3	4
101	PM10 source identification using the trajectory based potential source apportionment (TraPSA) toolkit at Kochi, India. Atmospheric Pollution Research, 2020, 11, 1535-1542.	3.8	11
102	Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources. Science of the Total Environment, 2020, 713, 136676.	8.0	17
103	Apportionment of PM2.5 adjacent to the I-710 Harbor Freeway in Long Beach, CA. Journal of the Air and Waste Management Association, 2020, 70, 260-282.	1.9	2
104	Exposure to particulate matter and gaseous pollutants during cab commuting in Nur-Sultan city of Kazakhstan. Atmospheric Pollution Research, 2020, 11, 880-885.	3.8	13
105	Concentrations and Long-Term Temporal Trends of Hexabromocyclododecanes (HBCDD) in Lake Trout and Walleye from the Great Lakes. Environmental Science & Technology, 2020, 54, 6134-6141.	10.0	9
106	Improved risk communications with a Bayesian multipollutant Air Quality Health Index. Science of the Total Environment, 2020, 722, 137892.	8.0	11
107	Effects of PM2.5 and gases exposure during prenatal and early-life on autism–like phenotypes in male rat offspring. Particle and Fibre Toxicology, 2020, 17, 8.	6.2	27
108	Assessment of Urban Air Quality in Indonesia. Aerosol and Air Quality Research, 2020, 20, 2142-2158.	2.1	30

#	Article	IF	CITATIONS
109	Letter to the Editor: Ending the Use of Obsolete Data Analysis Methods. Aerosol and Air Quality Research, 2020, 20, 688-689.	2.1	13
110	Understanding the Chemistry and Sources of Precipitation lons in the mid-Brahmaputra Valley of Northeastern India. Aerosol and Air Quality Research, 2020, 20, 2690-2704.	2.1	12
111	A Letter about the Airborne Transmission of SARS-CoV-2 Based on the Current Evidence. Aerosol and Air Quality Research, 2020, 20, 911-914.	2.1	63
112	Observation of Vapor Wall Deposition in a Smog Chamber Using Size Evolution of Pure Organic Particles. Aerosol and Air Quality Research, 2020, 20, 2705-2714.	2.1	3
113	The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Annals of the American Thoracic Society, 2019, 16, 321-330.	3.2	77
114	Identification of Sources from Chemical Characterization of Fine Particulate Matter and Assessment of Ambient Air Quality in Dhaka, Bangladesh. Aerosol and Air Quality Research, 2019, 19, 118-128.	2.1	39
115	Mortality and morbidity due to ambient air pollution in Iran. Clinical Epidemiology and Global Health, 2019, 7, 222-227.	1.9	65
116	A conceptual model to understand the soluble and insoluble Cr species in deliquesced particles. Air Quality, Atmosphere and Health, 2019, 12, 1091-1102.	3.3	7
117	Short and long-term impacts of ambient ozone on health in Ahvaz, Iran. Human and Ecological Risk Assessment (HERA), 2019, 25, 1336-1351.	3.4	16
118	Comparative health risk assessment of in-vehicle exposure to formaldehyde and acetaldehyde for taxi drivers and passengers: Effects of zone, fuel, refueling, vehicle's age and model. Environmental Pollution, 2019, 254, 112943.	7.5	25
119	Speciation of organic fractions does matter for aerosol source apportionment. Part 3: Combining off-line and on-line measurements. Science of the Total Environment, 2019, 690, 944-955.	8.0	39
120	Ambient Ammonia Concentrations Across New York State. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8287-8302.	3.3	41
121	Changes in triggering of ST-elevation myocardial infarction by particulate air pollution in Monroe County, New York over time: a case-crossover study. Environmental Health, 2019, 18, 82.	4.0	11
122	Cerebral ischemic attack, epilepsy and hospital admitted patients with types of headaches attributed to PM10 mass concentration in Abadan, Iran. Aeolian Research, 2019, 41, 100541.	2.7	17
123	Investigating the effect of several factors on concentrations of bioaerosols in a well-ventilated hospital environment. Environmental Monitoring and Assessment, 2019, 191, 407.	2.7	21
124	Legacy Polybrominated Diphenyl Ethers (PBDEs) Trends in Top Predator Fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will Concentrations Continue to Decrease?. Environmental Science & Technology, 2019, 53, 6650-6659.	10.0	32
125	Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. Atmosphere, 2019, 10, 27.	2.3	25
126	Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. Science of the Total Environment, 2019, 676, 564-576.	8.0	25

#	Article	IF	CITATIONS
127	Changes in the acute response of respiratory diseases to PM2.5 in New York State from 2005 to 2016. Science of the Total Environment, 2019, 677, 328-339.	8.0	66
128	Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. Environment International, 2019, 126, 387-394.	10.0	68
129	Simulation of Point Source Pollutant Dispersion Pattern: An Investigation of Effects of Prevailing Local Weather Conditions. Earth Systems and Environment, 2019, 3, 215-230.	6.2	3
130	Sources of humic-like substances (HULIS) in PM2.5 in Beijing: Receptor modeling approach. Science of the Total Environment, 2019, 671, 765-775.	8.0	47
131	Term birth weight and ambient air pollutant concentrations during pregnancy, among women living in Monroe County, New York. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 500-509.	3.9	10
132	Assessment of source profiles for suspended particulate pollutants in Ibadan, Nigeria using positive matrix factorization. Ife Journal of Science, 2019, 21, 73.	0.3	1
133	Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. Atmospheric Chemistry and Physics, 2019, 19, 2327-2341.	4.9	59
134	Ambient and controlled exposures to particulate air pollution and acute changes in heart rate variability and repolarization. Scientific Reports, 2019, 9, 1946.	3.3	32
135	Acute Associations of Respiratory Hospital Visits and Admissions with Fine Particulate Matter Mass, Constituents, and Gaseous Pollutants with in Dhaka, Bangladesh. , 2019, , .		0
136	Risk of Influenza and Respiratory Syncytial Virus Infection Associated with Particulate Air Pollution: An Adult Case-Control Study. , 2019, , .		2
137	Analysis of Postdeployment Serum Samples Identifies Potential Biomarkers of Exposure to Burn Pits and Other Environmental Hazards. Journal of Occupational and Environmental Medicine, 2019, 61, S45-S54.	1.7	6
138	Automated Isotopic Profile Deconvolution for High Resolution Mass Spectrometric Data (APGC-QToF) from Biological Matrices. Analytical Chemistry, 2019, 91, 15509-15517.	6.5	22
139	Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues. Environmental Science: Water Research and Technology, 2019, 5, 1876-1886.	2.4	10
140	Environmental Chemicals Altered in Association With Deployment for High Risk Areas. Journal of Occupational and Environmental Medicine, 2019, 61, S15-S24.	1.7	4
141	Machine Learning Approach for Predicting Past Environmental Exposures From Molecular Profiling of Post-Exposure Human Serum Samples. Journal of Occupational and Environmental Medicine, 2019, 61, S55-S64.	1.7	3
142	Integrative Network Analysis Linking Clinical Outcomes With Environmental Exposures and Molecular Variations in Service Personnel Deployed to Balad and Bagram. Journal of Occupational and Environmental Medicine, 2019, 61, S65-S72.	1.7	6
143	Use of Biomarkers to Assess Environmental Exposures and Health Outcomes in Deployed Troops. Journal of Occupational and Environmental Medicine, 2019, 61, S1-S4.	1.7	5
144	Metabolome-Wide Association Study of Deployment to Balad, Iraq or Bagram, Afghanistan. Journal of Occupational and Environmental Medicine, 2019, 61, S25-S34.	1.7	6

#	Article	IF	CITATIONS
145	Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. Journal of Occupational and Environmental Medicine, 2019, 61, S82-S89.	1.7	9
146	Ambient wintertime particulate air pollution and hypertensive disorders of pregnancy in Monroe County, New York. Environmental Research, 2019, 168, 25-31.	7.5	20
147	Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results. Atmospheric Environment, 2019, 199, 224-232.	4.1	24
148	Spatial-temporal variations of summertime ozone concentrations across a metropolitan area using a network of low-cost monitors to develop 24 hourly land-use regression models. Science of the Total Environment, 2019, 654, 1167-1178.	8.0	27
149	Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmospheric Environment, 2019, 201, 110-120.	4.1	37
150	Economic analysis of a field monitored residential wood pellet boiler heating system in New York State. Renewable Energy, 2019, 133, 500-511.	8.9	18
151	Residential coal combustion as a source of primary sulfate in Xi'an, China. Atmospheric Environment, 2019, 196, 66-76.	4.1	95
152	Ambient mercury source identification at a New York State urban site: Rochester, NY. Science of the Total Environment, 2019, 650, 1327-1337.	8.0	21
153	Airborne Particulate Pollution Measured in Bangladesh from 2014 to 2017. Aerosol and Air Quality Research, 2019, 19, 272-281.	2.1	14
154	Differential Probability Functions for Investigating Long-term Changes in Local and Regional Air Pollution Sources. Aerosol and Air Quality Research, 2019, 19, 724-736.	2.1	16
155	On the Performance Parameters of PM2.5 and PM1 Size Separators for Ambient Aerosol Monitoring. Aerosol and Air Quality Research, 2019, 19, 2173-2184.	2.1	4
156	Daily land use regression estimated woodsmoke and traffic pollution concentrations and the triggering of ST-elevation myocardial infarction: a case-crossover study. Air Quality, Atmosphere and Health, 2018, 11, 239-244.	3.3	20
157	Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environmental Science and Pollution Research, 2018, 25, 17726-17734.	5.3	44
158	CYP1A1 gene polymorphisms modify the association between PM10 exposure and lung function. Chemosphere, 2018, 203, 353-359.	8.2	9
159	Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling. Environmental Pollution, 2018, 237, 348-355.	7.5	27
160	Comprehensive Analysis of the Great Lakes Top Predator Fish for Novel Halogenated Organic Contaminants by GC×GC-HR-ToF Mass Spectrometry. Environmental Science & Technology, 2018, 52, 2909-2917.	10.0	46
161	Carbon Monoxide Off-Gassing From Bags of Wood Pellets. Annals of Work Exposures and Health, 2018, 62, 248-252.	1.4	7
162	Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 2018, 240, 155-166.	7.5	100

#	Article	IF	CITATIONS
163	Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region. Atmospheric Chemistry and Physics, 2018, 18, 3701-3715.	4.9	44
164	Polychlorinated biphenyls and organochlorine pesticides concentration patterns and trends in top predator fish of Laurentian Great Lakes from 1999 to 2014. Journal of Great Lakes Research, 2018, 44, 716-724.	1.9	28
165	Long-term trends in submicron particle concentrations in a metropolitan area of the northeastern United States. Science of the Total Environment, 2018, 633, 59-70.	8.0	39
166	PM2.5 and gaseous pollutants in New York State during 2005–2016: Spatial variability, temporal trends, and economic influences. Atmospheric Environment, 2018, 183, 209-224.	4.1	90
167	Simulated airflow and rigid fiber behavior in a realistic nasal airway model. Particulate Science and Technology, 2018, 36, 131-140.	2.1	8
168	Air pollution at Rochester, NY: Long-term trends and multivariate analysis of upwind SO2 source impacts. Science of the Total Environment, 2018, 612, 1506-1515.	8.0	40
169	Ambient black carbon particulate matter in the coal region of Dhanbad, India. Science of the Total Environment, 2018, 615, 955-963.	8.0	20
170	Risk of morbidity attributed to ambient PM ₁₀ in the western cities of Iran. Toxin Reviews, 2018, 37, 313-318.	3.4	40
171	Deposition of glass fibers in a physically realistic replica of the human respiratory tract. Journal of Aerosol Science, 2018, 117, 149-163.	3.8	16
172	A procedure to evaluate the factors determining the elemental composition of PM2.5. Case study: the Veneto region (northeastern Italy). Environmental Science and Pollution Research, 2018, 25, 3823-3839.	5.3	4
173	Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 2018, 234, 145-154.	7.5	50
174	Age-Corrected Trends and Toxic Equivalence of PCDD/F and CP-PCBs in Lake Trout and Walleye from the Great Lakes: 2004–2014. Environmental Science & Technology, 2018, 52, 712-721.	10.0	24
175	Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. Atmospheric Environment, 2018, 173, 277-288.	4.1	41
176	Bayesian Spatial Multivariate Receptor Modeling for Multisite Multipollutant Data. Technometrics, 2018, 60, 306-318.	1.9	11
177	Indoor concentrations of VOCs in beauty salons; association with cosmetic practices and health risk assessment. Journal of Occupational Medicine and Toxicology, 2018, 13, 30.	2.2	49
178	A long-term source apportionment of PM2.5 in New York State during 2005–2016. Atmospheric Environment, 2018, 192, 35-47.	4.1	51
179	Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Science of the Total Environment, 2018, 637-638, 943-953.	8.0	25
180	Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmospheric Environment, 2018, 187, 163-173.	4.1	83

#	Article	IF	CITATIONS
181	Current State of Particulate Air Quality. , 2018, , 1-19.		1
182	Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter. Environmental Science and Technology Letters, 2018, 5, 405-412.	8.7	36
183	Commentary: Integrating non-targeted and targeted chemical screening in Great Lakes fish monitoring programs. Journal of Great Lakes Research, 2018, 44, 1127-1135.	1.9	14
184	Indoor and outdoor concentrations of BTEX and formaldehyde in Tehran, Iran: effects of building characteristics and health risk assessment. Environmental Science and Pollution Research, 2018, 25, 27423-27437.	5.3	46
185	Hourly land-use regression models based on low-cost PM monitor data. Environmental Research, 2018, 167, 7-14.	7.5	45
186	Thermal energy storage tank sizing for biomass boiler heating systems using process dynamic simulation. Energy and Buildings, 2018, 175, 199-207.	6.7	17
187	Pollution concentrations in Delhi India during winter 2015–16: A case study of an odd-even vehicle strategy. Atmospheric Pollution Research, 2018, 9, 1137-1145.	3.8	42
188	Potential sources and meteorological factors affecting PM2.5-bound polycyclic aromatic hydrocarbon levels in six main cities of northeastern Italy: an assessment of the related carcinogenic and mutagenic risks. Environmental Science and Pollution Research, 2018, 25, 31987-32000.	5.3	19
189	Triggering of cardiovascular hospital admissions by fine particle concentrations in New York state: Before, during, and after implementation of multiple environmental policies and a recession. Environmental Pollution, 2018, 242, 1404-1416.	7.5	69
190	Do elevated blood levels of omega-3 fatty acids modify effects of particulate air pollutants on fibrinogen?. Air Quality, Atmosphere and Health, 2018, 11, 791-799.	3.3	8
191	Mortality and morbidity for cardiopulmonary diseases attributed to PM2.5 exposure in the metropolis of Rome, Italy. European Journal of Internal Medicine, 2018, 57, 49-57.	2.2	59
192	Spatial and Temporal Trends of Short-Term Health Impacts of PM2.5 in Iranian Cities; a Modelling Approach (2013-2016). Aerosol and Air Quality Research, 2018, 18, 497-504.	2.1	33
193	Ambient Air Quality in Dhaka Bangladesh over Two Decades: Impacts of Policy on Air Quality. Aerosol and Air Quality Research, 2018, 18, 1910-1920.	2.1	45
194	Evaluation and Field Calibration of a Low-cost Ozone Monitor at a Regulatory Urban Monitoring Station. Aerosol and Air Quality Research, 2018, 18, 2029-2037.	2.1	9
195	Triggering of ST-elevation myocardial infarction by ambient wood smoke and other particulate and gaseous pollutants. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 198-206.	3.9	25
196	Effect of adding variables on rotational ambiguity in positive matrix factorization solutions. Chemometrics and Intelligent Laboratory Systems, 2017, 162, 198-202.	3.5	20
197	A controlled study for the characterization of PM2.5 emitted during grilling ground beef meat. Journal of Aerosol Science, 2017, 103, 132-140.	3.8	36
198	Analysis of major air pollutants and submicron particles in New York City and Long Island. Atmospheric Environment, 2017, 148, 203-214.	4.1	47

#	Article	IF	CITATIONS
199	Atmospheric Mercury Temporal Trends in the Northeastern United States from 1992 to 2014: Are Measured Concentrations Responding to Decreasing Regional Emissions?. Environmental Science and Technology Letters, 2017, 4, 91-97.	8.7	37
200	Characteristics of absorbing aerosols during winter foggy period over the National Capital Region of Delhi: Impact of planetary boundary layer dynamics and solar radiation flux. Atmospheric Research, 2017, 188, 1-10.	4.1	22
201	Size segregated PM and its chemical composition emitted from heated corn oil. Environmental Research, 2017, 154, 101-108.	7.5	27
202	Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environmental Research, 2017, 154, 352-361.	7.5	58
203	Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment. Environmental Science and Pollution Research, 2017, 24, 9515-9529.	5.3	40
204	Source apportionment of PM 2.5 size distribution and composition data from multiple stationary sites using a mobile platform. Atmospheric Research, 2017, 190, 21-28.	4.1	9
205	Review of factors impacting emission/concentration of cooking generated particulate matter. Science of the Total Environment, 2017, 586, 1046-1056.	8.0	127
206	Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environmental Research, 2017, 156, 683-687.	7.5	77
207	Assessment of Methods for the Measurement of Wood Fuel Compositions. Energy & Fuels, 2017, 31, 5215-5221.	5.1	7
208	Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. Public Health, 2017, 148, 109-116.	2.9	86
209	Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. Journal of Aerosol Science, 2017, 105, 24-34.	3.8	81
210	Microenvironmental air quality impact of a commercial-scale biomass heating system. Environmental Pollution, 2017, 220, 1112-1120.	7.5	42
211	Coal use for residential heating: Patterns, health implications and lessons learned. Energy for Sustainable Development, 2017, 40, 19-30.	4.5	99
212	Occupational exposure of aldehydes resulting from the storage of wood pellets. Journal of Occupational and Environmental Hygiene, 2017, 14, 417-426.	1.0	15
213	Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015: Are Concentrations Still Decreasing?. Environmental Science & Technology, 2017, 51, 7386-7394.	10.0	52
214	Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the Middle Eastern Dust storms. Environmental Science and Pollution Research, 2017, 24, 16860-16868.	5.3	70
215	Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environmental Research, 2017, 156, 320-325.	7.5	71
216	A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York. Environmental Research, 2017, 156, 312-319.	7.5	10

#	Article	IF	CITATIONS
217	Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3573-3594.	3.3	70
218	Impact of Middle Eastern Dust storms on human health. Atmospheric Pollution Research, 2017, 8, 606-613.	3.8	122
219	Performance Evaluation of Two 25 kW Residential Wood Pellet Boiler Heating Systems. Energy & Fuels, 2017, 31, 12174-12182.	5.1	13
220	Continuous Ozonolysis Process To Produce Non-CO Off-Gassing Wood Pellets. Energy & Fuels, 2017, 31, 8228-8234.	5.1	6
221	Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 2017, 74, 423-450.	3.2	45
222	Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environmental Science and Pollution Research, 2017, 24, 2100-2115.	5.3	19
223	Characteristics of traffic-induced fugitive dust from unpaved roads. Aerosol Science and Technology, 2017, 51, 1324-1331.	3.1	16
224	Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City. Atmospheric Environment, 2017, 148, 215-229.	4.1	74
225	Urban air quality in a mid-size city — PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmospheric Research, 2017, 186, 51-62.	4.1	57
226	Cardiopulmonary mortality and COPD attributed to ambient ozone. Environmental Research, 2017, 152, 336-341.	7.5	65
227	Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensors, 2017, 17, 1922.	3.8	71
228	A Chamber Study of Secondary Organic Aerosol (SOA) Formed by Ozonolysis of d-Limonene in the Presence of NO. Aerosol and Air Quality Research, 2017, 17, 59-68.	2.1	11
229	Analysis of Beta Attenuation Monitor Filter Rolls for Particulate Matter Speciation. Aerosol and Air Quality Research, 2017, 17, 14-23.	2.1	11
230	Identification of Sources of Fine Particulate Matter in Kandy, Sri Lanka. Aerosol and Air Quality Research, 2017, 17, 476-484.	2.1	10
231	Chemical Characteristics of PM2.5 during a 2016 Winter Haze Episode in Shijiazhuang, China. Aerosol and Air Quality Research, 2017, 17, 368-380.	2.1	28
232	Trajectory-Based Models and Remote Sensing for Biomass Burning Assessment in Bangladesh. Aerosol and Air Quality Research, 2017, 17, 465-475.	2.1	18
233	Estimation of Mortality and Hospital Admissions Attributed to Criteria Air Pollutants in Tehran Metropolis, Iran (2013-2016). Aerosol and Air Quality Research, 2017, 17, 2474-2481.	2.1	56
234	Source Apportionment of Fine and Coarse Particulate Matter in Industrial Areas of Kaduna, Northern Nigeria. Aerosol and Air Quality Research, 2016, 16, 1179-1190.	2.1	19

#	Article	IF	CITATIONS
235	Nature and Sources of Ionic Species in Precipitation across the Indo-Gangetic Plains, India. Aerosol and Air Quality Research, 2016, 16, 943-957.	2.1	60
236	Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 2016, 146, 90-99.	4.1	100
237	On the source contribution to Beijing PM2.5 concentrations. Atmospheric Environment, 2016, 134, 84-95.	4.1	146
238	Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 287-298.	2.3	14
239	Does total antioxidant capacity modify adverse cardiac responses associated with ambient ultrafine, accumulation mode, and fine particles in patients undergoing cardiac rehabilitation?. Environmental Research, 2016, 149, 15-22.	7.5	20
240	Source apportionment analyses for fine (PM 2.5) and coarse (PM 2.5–10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmospheric Pollution Research, 2016, 7, 843-857.	3.8	30
241	Application of image analysis method to detection and counting of glass fibers from filter samples. Aerosol Science and Technology, 2016, 50, 353-362.	3.1	8
242	Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Science of the Total Environment, 2016, 573, 894-905.	8.0	54
243	Obituary – Dr. Milton Kerker. Journal of Aerosol Science, 2016, 98, 59.	3.8	0
244	Mechanistic Pathway of Carbon Monoxide Off-Gassing from Wood Pellets. Energy & Fuels, 2016, 30, 5809-5815.	5.1	23
245	Comprehensive Emerging Chemical Discovery: Novel Polyfluorinated Compounds in Lake Michigan Trout. Environmental Science & Technology, 2016, 50, 9460-9468.	10.0	42
246	Laboratory assessment of low-cost PM monitors. Journal of Aerosol Science, 2016, 102, 29-40.	3.8	150
247	Source identification and apportionment of PM2.5 and PM2.5â^'10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environmental Monitoring and Assessment, 2016, 188, 574.	2.7	48
248	Source Apportionment of Airborne Dioxins, Furans, and Polycyclic Aromatic Hydrocarbons at a United States Forward Operating Air Base During the Iraq War. Journal of Occupational and Environmental Medicine, 2016, 58, S31-S37.	1.7	15
249	Detection of Serum microRNAs From Department of Defense Serum Repository. Journal of Occupational and Environmental Medicine, 2016, 58, S62-S71.	1.7	17
250	Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans in Microliter Samples of Human Serum as Exposure Indicators. Journal of Occupational and Environmental Medicine, 2016, 58, S72-S79.	1.7	19
251	Deployment-Associated Exposure Surveillance With High-Resolution Metabolomics. Journal of Occupational and Environmental Medicine, 2016, 58, S12-S21.	1.7	34
252	MicroRNAs as Novel Biomarkers of Deployment Status and Exposure to Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans. Journal of Occupational and Environmental Medicine, 2016, 58, S89-S96.	1.7	20

#	Article	IF	CITATIONS
253	Airborne Dioxins, Furans, and Polycyclic Aromatic Hydrocarbons Exposure to Military Personnel in Iraq. Journal of Occupational and Environmental Medicine, 2016, 58, S22-S30.	1.7	25
254	Pilot Metabolome-Wide Association Study of Benzo(a)pyrene in Serum From Military Personnel. Journal of Occupational and Environmental Medicine, 2016, 58, S44-S52.	1.7	32
255	Introduction to Department of Defense Research on Burn Pits, Biomarkers, and Health Outcomes Related to Deployment in Iraq and Afghanistan. Journal of Occupational and Environmental Medicine, 2016, 58, S3-S11.	1.7	22
256	Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmospheric Pollution Research, 2016, 7, 808-816.	3.8	32
257	Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Atmospheric Pollution Research, 2016, 7, 671-679.	3.8	25
258	Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain. Atmospheric Research, 2016, 178-179, 393-400.	4.1	29
259	Observations of ambient trace gas and PM 10 concentrations at Patna, Central Ganga Basin during 2013–2014: The influence of meteorological variables on atmospheric pollutants. Atmospheric Research, 2016, 180, 138-149.	4.1	38
260	Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city "New Delhi,―India. Environmental Science and Pollution Research, 2016, 23, 8781-8793.	5.3	42
261	Review of receptor modeling methods for source apportionment. Journal of the Air and Waste Management Association, 2016, 66, 237-259.	1.9	405
262	The discovery of the metallic particles of groundwater from the Dongshengmiao polymetallic deposit, Inner Mongolia, and their prospecting significance. Journal of Geochemical Exploration, 2016, 161, 49-61.	3.2	22
263	Combustion of Switchgrass in Biomass Home Heating Systems: Emissions and Ash Behavior. Energy & Fuels, 2016, 30, 2958-2967.	5.1	8
264	Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment, 2016, 542, 172-181.	8.0	60
265	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environmental Science & Technology, 2016, 50, 79-88.	10.0	886
266	Case Studies of Source Apportionment from North America. Issues in Environmental Science and Technology, 2016, , 126-167.	0.4	2
267	Ambient and Controlled Particle Exposures as Triggers for Acute ECG Changes. Research Report (health Effects Institute), 2016, , 5-75.	1.6	5
268	Determinants on ambient PM2.5 infiltration in non-heating season for urban residences in Beijing: Building characteristics, interior surface coverings and human behavior. Atmospheric Pollution Research, 2015, 6, 1046-1054.	3.8	18
269	Chemical compositions and source identification of particulate matter (PM 2.5 and PM 2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria. Atmospheric Pollution Research, 2015, 6, 107-119.	3.8	90
270	Mercury biomagnification and contemporary food web dynamics in lakes Superior and Huron. Journal of Great Lakes Research, 2015, 41, 473-483.	1.9	12

#	Article	IF	CITATIONS
271	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. Atmospheric Environment, 2015, 123, 240-250.	4.1	63
272	Seasonal inhomogeneity of soot particles over the central Indo-Gangetic Plains, India: Influence of meteorology. Journal of Meteorological Research, 2015, 29, 935-949.	2.4	13
273	The mystery "Well†A natural cloud chamber?. Journal of Aerosol Science, 2015, 81, 70-74.	3.8	1
274	Exposures to Carbon Monoxide from Off-Gassing of Bulk Stored Wood Pellets. Energy & Fuels, 2015, 29, 218-226.	5.1	22
275	Application of positive matrix factorization to source apportionment of surface water quality of the Daliao River basin, northeast China. Environmental Monitoring and Assessment, 2015, 187, 80.	2.7	27
276	Wood combustion, a dominant source of winter aerosol in residential district in proximity to a large automobile factory in Central Europe. Atmospheric Environment, 2015, 113, 98-107.	4.1	33
277	It is time to drop principal components analysis as a "receptor model― Journal of Atmospheric Chemistry, 2015, 72, 127-128.	3.2	19
278	Measurement and Modeling of Carbon Monoxide Emission Rates from Multiple Wood Pellet Types. Energy & Fuels, 2015, 29, 3715-3724.	5.1	22
279	Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy). Atmospheric Environment, 2015, 117, 19-31.	4.1	39
280	Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution, 2015, 205, 121-130.	7.5	68
281	Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmospheric Research, 2015, 166, 223-232.	4.1	85
282	Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. Atmospheric Environment, 2015, 108, 140-150.	4.1	50
283	Study of the carbonaceous aerosol and morphological analysis of fine particles along with their mixing state in Delhi, India: a case study. Environmental Science and Pollution Research, 2015, 22, 10744-10757.	5.3	29
284	Factors affecting pollutant concentrations in the near-road environment. Atmospheric Environment, 2015, 115, 223-235.	4.1	57
285	Constraining the factor analytical solutions obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. Atmospheric Environment, 2015, 108, 151-157.	4.1	27
286	VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air. Energy & Fuels, 2015, 29, 6485-6493.	5.1	32
287	Characteristics and geological significance of particles on fractures from the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, China. Geochemistry: Exploration, Environment, Analysis, 2015, 15, 373-381.	0.9	12
288	A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises. Atmospheric Environment, 2015, 119, 35-44.	4.1	37

#	Article	IF	CITATIONS
289	Chemometrics applied to environmental systems. Chemometrics and Intelligent Laboratory Systems, 2015, 149, 205-214.	3.5	14
290	Study of Carbonâ€Bearing Particles in Ascending Geogas Flows in the <scp>D</scp> ongshengmiao Polymetallic Pyrite Deposit, Inner <scp>M</scp> ongolia, <scp>C</scp> hina. Resource Geology, 2015, 65, 13-26.	0.8	16
291	Spatial and temporal variations of the particulate size distribution and chemical composition over Ibadan, Nigeria. Environmental Monitoring and Assessment, 2015, 187, 544.	2.7	25
292	Applying Multivariate Curve Resolution to Source Apportionment of the Atmospheric Aerosol. ACS Symposium Series, 2015, , 129-157.	0.5	4
293	Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach. Atmospheric Environment, 2015, 122, 477-483.	4.1	24
294	Reactive Ambient Particles. Molecular and Integrative Toxicology, 2015, , 1-24.	0.5	2
295	Triggering of myocardial infarction by increased ambient fine particle concentration: Effect modification by source direction. Environmental Research, 2015, 142, 374-379.	7.5	8
296	Source apportionment of size resolved particulate matter at a European air pollution hot spot. Science of the Total Environment, 2015, 502, 172-183.	8.0	53
297	Characterization of PM Using Multiple Site Data in a Heavily Industrialized Region of Turkey. Aerosol and Air Quality Research, 2015, 15, 11-27.	2.1	38
298	Positive Matrix Factorization of 47 Years of Particle Measurements in Finnish Arctic. Aerosol and Air Quality Research, 2015, 15, 188-207.	2.1	12
299	Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800. Journal of the Air and Waste Management Association, 2014, 64, 1439-1445.	1.9	16
300	Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: a unified Bayesian approach. Biostatistics, 2014, 15, 484-497.	1.5	24
301	Comparison of PoraPak Rxn RP and XAD-2 adsorbents for monitoring dissolved hydrophobic organic contaminants. Environmental Monitoring and Assessment, 2014, 186, 7565-7577.	2.7	2
302	Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. Environmental Research, 2014, 129, 11-19.	7.5	123
303	Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Particle and Fibre Toxicology, 2014, 11, 1.	6.2	214
304	Acute changes in ambient temperature are associated with adverse changes in cardiac rhythm. Air Quality, Atmosphere and Health, 2014, 7, 357-367.	3.3	16
305	A targeted/non-targeted screening method for perfluoroalkyl carboxylic acids and sulfonates in whole fish using quadrupole time-of-flight mass spectrometry and MSe. Analytical and Bioanalytical Chemistry, 2014, 406, 1471-1480.	3.7	43
306	Long-term particle measurements in Finnish Arctic: Part I – Chemical composition and trace metal solubility. Atmospheric Environment, 2014, 88, 275-284.	4.1	18

#	Article	IF	CITATIONS
307	Source apportionment of PM2.5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. Atmospheric Environment, 2014, 98, 78-88.	4.1	53
308	Thirteen years of air pollution hourly monitoring in a large city: Potential sources, trends, cycles and effects of car-free days. Science of the Total Environment, 2014, 494-495, 84-96.	8.0	100
309	Forty-seven years of weekly atmospheric black carbon measurements in the Finnish Arctic: Decrease in black carbon with declining emissions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7667-7683.	3.3	34
310	A chamber study of secondary organic aerosol formed by ozonolysis of α-pinene in the presence of nitric oxide. Journal of Atmospheric Chemistry, 2014, 71, 21-32.	3.2	7
311	The PM _{2.5} chemical composition in an industrial zone included in a large urban settlement: main sources and local background. Environmental Sciences: Processes and Impacts, 2014, 16, 1913.	3.5	18
312	The dark side of the tradition: The polluting effect of Epiphany folk fires in the eastern Po Valley (Italy). Science of the Total Environment, 2014, 473-474, 549-564.	8.0	9
313	Long-term particle measurements in Finnish Arctic: Part II – Trend analysis and source location identification. Atmospheric Environment, 2014, 88, 285-296.	4.1	8
314	Advanced receptor modeling of near–real–time, ambient PM 2.5 and its associated components collected at an urban–industrial site in Toronto, Ontario. Atmospheric Pollution Research, 2014, 5, 13-23.	3.8	39
315	Particle nucleation in a forested environment. Atmospheric Pollution Research, 2014, 5, 805-810.	3.8	2
316	Investigations of Transported and Local Emissions on Particle Compositions in Korea. Aerosol and Air Quality Research, 2014, 14, 793-805.	2.1	7
317	Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey. Aerosol and Air Quality Research, 2014, 14, 1939-1949.	2.1	25
318	Is Alaska Truly the Great Escape from Air Pollution? - Long Term Source Apportionment of Fine Particulate Matter in Fairbanks, Alaska. Aerosol and Air Quality Research, 2014, 14, 1875-1882.	2.1	20
319	US EPA particulate matter research centers: summary of research results for 2005–2011. Air Quality, Atmosphere and Health, 2013, 6, 333-355.	3.3	45
320	Assessment of exposure to outdoor BTEX concentrations on the Saint Regis Mohawk Tribe reservation at Akwesasne New York State. Air Quality, Atmosphere and Health, 2013, 6, 181-193.	3.3	12
321	PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic. Environmental Science and Pollution Research, 2013, 20, 6496-6508.	5.3	24
322	Using a photochemical model to assess the horizontal, vertical and time distribution of PM2.5 in a complex area: Relationships between the regional and local sources and the meteorological conditions. Science of the Total Environment, 2013, 443, 681-691.	8.0	29
323	Source apportionment of time- and size-resolved ambient particulate matter. Chemometrics and Intelligent Laboratory Systems, 2013, 129, 15-20.	3.5	21
324	Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 2013, 69, 94-108.	4.1	472

#	Article	IF	CITATIONS
325	Cr speciation changes in the presence of ozone and reactive oxygen species at low relative humidity. Atmospheric Environment, 2013, 71, 92-94.	4.1	24
326	Seasonal trends and spatial variations of PM10-bounded polycyclic aromatic hydrocarbons in Veneto Region, Northeast Italy. Atmospheric Environment, 2013, 79, 811-821.	4.1	42
327	Characterization and source identification of airborne particulate loadings at receptor site-classes of Lagos Mega-City, Nigeria. Journal of the Air and Waste Management Association, 2013, 63, 1026-1035.	1.9	33
328	Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana. Journal of the Air and Waste Management Association, 2013, 63, 1036-1045.	1.9	23
329	Atmospheric black carbon in PM _{2.5} in Indonesian cities. Journal of the Air and Waste Management Association, 2013, 63, 1022-1025.	1.9	26
330	Improved atmospheric sampling of hexavalent chromium. Journal of the Air and Waste Management Association, 2013, 63, 1313-1323.	1.9	22
331	Additive impacts on particle emissions from heating low emitting cooking oils. Atmospheric Environment, 2013, 74, 194-198.	4.1	48
332	Effect of the shutdown of a large coal-fired power plant on ambient mercury species. Chemosphere, 2013, 92, 360-367.	8.2	26
333	TEM study of geogas-transported nanoparticles from the Fankou lead–zinc deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 2013, 128, 124-135.	3.2	42
334	Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model. Science of the Total Environment, 2013, 443, 375-386.	8.0	46
335	Interconversion of Chromium Species During Air Sampling: Effects of O ₃ , NO ₂ , SO ₂ , Particle Matrices, Temperature, and Humidity. Environmental Science & Technology, 2013, 47, 4408-4415.	10.0	21
336	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	3.3	4,319
337	Characterization of Emissions from Grass Pellet Combustion. Energy & amp; Fuels, 2013, 27, 5298-5306.	5.1	31
338	Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions. Journal of the Air and Waste Management Association, 2013, 63, 1046-1057.	1.9	13
339	Residential-Scale Biomass Boiler Emissions and Efficiency Characterization for Several Fuels. Energy & Fuels, 2013, 27, 4840-4849.	5.1	48
340	Introduction to a special grouping of papers from the 2012 A&WMA International Specialty Conference, Aerosol and Atmospheric Optics: Visibility and Air Pollution. Journal of the Air and Waste Management Association, 2013, 63, 1003-1003.	1.9	0
341	Particulate matter source apportionment in a village situated in industrial region of Central Europe. Journal of the Air and Waste Management Association, 2013, 63, 1412-1421.	1.9	17
342	Longâ€ŧerm trends of biogenic sulfur aerosol and its relationship with sea surface temperature in Arctic Finland. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,770.	3.3	20

#	Article	IF	CITATIONS
343	Air pollution by fine particulate matter in Bangladesh. Atmospheric Pollution Research, 2013, 4, 75-86.	3.8	125
344	A ten–year source apportionment study of ambient fine particulate matter in San Jose, California. Atmospheric Pollution Research, 2013, 4, 398-404.	3.8	23
345	Emission fluxes of different metals in aerosol emitted during frying-Effect of frying pan. ISEE Conference Abstracts, 2013, 2013, 5075.	0.0	2
346	Evaluation of a Modified Receptor Model for Solving Multiple Time Resolution Equations: A Simulation Study. Aerosol and Air Quality Research, 2013, 13, 1253-1262.	2.1	19
347	Long Term Black Carbon Measurements at Two Urban Locations in New York. Aerosol and Air Quality Research, 2013, 13, 1181-1196.	2.1	37
348	Distribution of Nanoparticles near a Major U.S. and Canada Trade Bridge: Comparison of Simulations with Field Data. Aerosol and Air Quality Research, 2013, 13, 3-12.	2.1	2
349	Multiple-year black carbon measurements and source apportionment using Delta-C in Rochester, New York. Journal of the Air and Waste Management Association, 2012, 62, 880-887.	1.9	73
350	Quantitative Analysis of Unique Deposition Pattern of Submicron Fe3O4Particles Using Computer-Controlled Scanning Electron Microscopy. Aerosol Science and Technology, 2012, 46, 905-912.	3.1	4
351	Are Ambient Ultrafine, Accumulation Mode, and Fine Particles Associated with Adverse Cardiac Responses in Patients Undergoing Cardiac Rehabilitation?. Environmental Health Perspectives, 2012, 120, 1162-1169.	6.0	98
352	Effects of outdoor air pollutants on platelet activation in people with type 2 diabetes. Inhalation Toxicology, 2012, 24, 831-838.	1.6	35
353	Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke. Aerosol Science and Technology, 2012, 46, 191-197.	3.1	34
354	Characterization of fine particulate sources at Ashaiman in Greater Accra, Ghana. Atmospheric Pollution Research, 2012, 3, 301-310.	3.8	16
355	Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environmental Science and Pollution Research, 2012, 19, 2942-2950.	5.3	31
356	Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study. Atmospheric Environment, 2012, 63, 117-124.	4.1	34
357	Technical details of the equation oriented system. Chemometrics and Intelligent Laboratory Systems, 2012, 118, 74-78.	3.5	0
358	Temporal trends of polychlorinated biphenyls and organochlorine pesticides in Great Lakes fish, 1999–2009. Science of the Total Environment, 2012, 439, 284-290.	8.0	55
359	A new indicator of fireworks emissions in Rochester, New York. Environmental Monitoring and Assessment, 2012, 184, 7293-7297.	2.7	11
360	Polybrominated Diphenyl Ethers (PBDEs): Turning the Corner in Great Lakes Trout 1980–2009. Environmental Science & Technology, 2012, 46, 9890-9897.	10.0	79

#	Article	IF	CITATIONS
361	Chemical Composition of Wood Chips and Wood Pellets. Energy & amp; Fuels, 2012, 26, 4932-4937.	5.1	89
362	Development of a realistic human airway model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 197-207.	1.8	53
363	The Impact of Deliquescence and pH on Cr Speciation in Ambient PM Samples. Aerosol Science and Technology, 2012, 46, 690-696.	3.1	30
364	Temporal variations and sources of Eastern Mediterranean aerosols based on a 9-year observation. Atmospheric Environment, 2012, 61, 463-475.	4.1	27
365	Toxaphene trends in the Great Lakes fish. Journal of Great Lakes Research, 2012, 38, 31-38.	1.9	24
366	Transport and deposition of ellipsoidal fibers in low Reynolds number flows. Journal of Aerosol Science, 2012, 45, 1-18.	3.8	49
367	A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. Journal of Aerosol Science, 2012, 46, 64-76.	3.8	85
368	Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. Bioresource Technology, 2012, 125, 52-58.	9.6	42
369	Particle Deposition in the Human Respiratory Tract. , 2012, , 223-240.		2
370	Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhalation Toxicology, 2012, 24, 850-857.	1.6	257
371	Quantification of Indoor Air Pollution from Using Cookstoves and Estimation of Its Health Effects on Adult Women in Northwest Bangladesh. Aerosol and Air Quality Research, 2012, 12, 463-475.	2.1	61
372	Air quality study of Islamabad: preliminary results. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 351-358.	1.5	17
373	Urban-Scale Seasonal and Spatial Variability of Ultrafine Particle Number Concentrations. Water, Air, and Soil Pollution, 2012, 223, 2223-2235.	2.4	20
374	Characterization and heterogeneity of coarse particles across an urban area. Atmospheric Environment, 2012, 46, 449-459.	4.1	32
375	Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmospheric Environment, 2012, 46, 329-337.	4.1	132
376	Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmospheric Environment, 2012, 55, 525-532.	4.1	78
377	Chemical nature and molecular weight distribution of the water-soluble fine and ultrafine PM fractions collected in a rural environment. Atmospheric Environment, 2012, 59, 264-271.	4.1	28
378	PM _{2.5} and ultrafine particles emitted during heating of commercial cooking oils. Indoor Air, 2012, 22, 483-491.	4.3	116

#	Article	IF	CITATIONS
379	Impact of percentile computation method on PM 24-h air quality standard. Journal of Environmental Management, 2012, 107, 110-113.	7.8	5
380	Air pollution and health: bridging the gap from sources to health outcomes: conference summary. Air Quality, Atmosphere and Health, 2012, 5, 9-62.	3.3	54
381	Exploring the Variation between EC and BC in a Variety of Locations. Aerosol and Air Quality Research, 2012, 12, 1-7.	2.1	78
382	Seasonal Characteristics of Water-Soluble Dicarboxylates Associated with PM10 in the Urban Atmosphere of Durg City, India. Aerosol and Air Quality Research, 2012, 12, 683-696.	2.1	13
383	Organic and Black Carbon in PM2.5 at an Urban Site at Dhaka, Bangladesh. Aerosol and Air Quality Research, 2012, 12, 1062-1072.	2.1	48
384	Characterization of ambient black carbon and wood burning particles in two urban areas. Journal of Environmental Monitoring, 2011, 13, 1919.	2.1	71
385	Secondary Organic Aerosol from Ozonolysis of Biogenic Volatile Organic Compounds: Chamber Studies of Particle and Reactive Oxygen Species Formation. Environmental Science & Technology, 2011, 45, 276-282.	10.0	91
386	Heterogeneity of Coarse Particles in an Urban Area. Environmental Science & Technology, 2011, 45, 3288-3296.	10.0	37
387	Characterization of Residential Wood Combustion Particles Using the Two-Wavelength Aethalometer. Environmental Science & Technology, 2011, 45, 7387-7393.	10.0	112
388	Emission Characterization and Efficiency Measurements of High-Efficiency Wood Boilers. Energy & Fuels, 2011, 25, 5015-5021.	5.1	39
389	Identification, Apportionment, and Photochemical Reactivity of Non-methane Hydrocarbon Sources in Busan, Korea. Water, Air, and Soil Pollution, 2011, 215, 67-82.	2.4	13
390	Laboratory and Field Testing of an Automated Atmospheric Particle-Bound Reactive Oxygen Species Sampling-Analysis System. Journal of Toxicology, 2011, 2011, 1-9.	3.0	34
391	Spatial and vertical extent of nucleation events in the Midwestern USA: insights from the Nucleation In ForesTs (NIFTy) experiment. Atmospheric Chemistry and Physics, 2011, 11, 1641-1657.	4.9	37
392	Effect of the Shutdown of a Coal-Fired Power Plant on Urban Ultrafine Particles and Other Pollutants. Aerosol Science and Technology, 2011, 45, 1245-1249.	3.1	20
393	Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmospheric Pollution Research, 2011, 2, 207-212.	3.8	32
394	Application of receptor modeling methods. Atmospheric Pollution Research, 2011, 2, 122-125.	3.8	26
395	Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research, 2011, 2, 172-181.	3.8	60
396	Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmospheric Pollution Research, 2011, 2, 190-196.	3.8	55

#	Article	IF	CITATIONS
397	Using highly time resolved fine particulate compositions to find particle sources in St. Louis, MO. Atmospheric Pollution Research, 2011, 2, 219-230.	3.8	11
398	Long–range transport of soil dust and smoke pollution in the South Asian region. Atmospheric Pollution Research, 2011, 2, 151-157.	3.8	70
399	Source apportionment of benzene downwind of a major point source. Atmospheric Pollution Research, 2011, 2, 138-143.	3.8	7
400	Modeling toxaphene behavior in the Great Lakes. Science of the Total Environment, 2011, 409, 792-799.	8.0	11
401	An evaluation of direct measurement techniques for mercury dry deposition. Science of the Total Environment, 2011, 409, 1320-1327.	8.0	37
402	Long-term study of urban ultrafine particles and other pollutants. Atmospheric Environment, 2011, 45, 7672-7680.	4.1	88
403	Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmospheric Environment, 2011, 45, 7705-7713.	4.1	106
404	Development of a new method to estimate the regional and local contributions to black carbon. Atmospheric Environment, 2011, 45, 7681-7687.	4.1	5
405	Mercury (Hg) emissions from domestic biomass combustion for space heating. Chemosphere, 2011, 84, 1694-1699.	8.2	37
406	Mercury temporal trends in top predator fish of the Laurentian Great Lakes. Ecotoxicology, 2011, 20, 1568-1576.	2.4	42
407	Urban-scale Spatial-temporal Variability of Black Carbon and Winter Residential Wood Combustion Particles. Aerosol and Air Quality Research, 2011, 11, 473-481.	2.1	62
408	Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2. Asian Journal of Atmospheric Environment, 2011, 5, 86-96.	1.1	17
409	Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka. Asian Journal of Atmospheric Environment, 2011, 5, 237-246.	1.1	13
410	Spatial Measurements of Ultrafine Particles Using an Engine Exhaust Particle Sizer TM within a Local Community Downwind of a Major International Trade Bridge in Buffalo, New York. Aerosol Science and Technology, 2010, 44, 1096-1104.	3.1	5
411	Detection of radical species formed by the ozonolysis of α-pinene. Journal of Atmospheric Chemistry, 2010, 66, 137-155.	3.2	16
412	Source Apportionment of the Atmospheric Aerosol in Lahore, Pakistan. Water, Air, and Soil Pollution, 2010, 208, 43-57.	2.4	42
413	Discussion of "Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations―by YuanXun Zhang, Rebecca J. Sheesley, Min-Suk Bae and James J. Schauer. Atmospheric Environment, 2010, 44, 1138-1138.	4.1	4
414	Polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDE) air concentrations in the Lake Ontario region: Trends and potential sources. Atmospheric Environment, 2010, 44, 3173-3178.	4.1	9

#	Article	IF	CITATIONS
415	Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. Building and Environment, 2010, 45, 330-337.	6.9	66
416	A chamber study of secondary organic aerosol formation by limonene ozonolysis. Indoor Air, 2010, 20, 320-328.	4.3	77
417	Ambient Mercury Sources in Rochester, NY: Results from Principle Components Analysis (PCA) of Mercury Monitoring Network Data. Environmental Science & Technology, 2010, 44, 8441-8445.	10.0	60
418	PCDD/F Source Apportionment in the Baltic Sea Using Positive Matrix Factorization. Environmental Science & Content Science & S	10.0	53
419	Long-Term Characterization of Indoor and Outdoor Ultrafine Particles at a Commercial Building. Environmental Science & Technology, 2010, 44, 5775-5780.	10.0	28
420	Impacts of the Canadian Forest Fires on Atmospheric Mercury and Carbonaceous Particles in Northern New York. Environmental Science & amp; Technology, 2010, 44, 8435-8440.	10.0	60
421	Performance Evaluation of a Model Electrostatic Precipitator for an Advanced Wood Combustion System. Energy & Fuels, 2010, 24, 6301-6306.	5.1	15
422	Resuspension of indoor aeroallergens and relationship to lung inflammation in asthmatic children. Environment International, 2010, 36, 8-14.	10.0	61
423	Identification of Sources of Fine and Coarse Particulate Matter in Dhaka, Bangladesh. Aerosol and Air Quality Research, 2010, 10, 345-353.	2.1	93
424	Fibrous and Spherical Particle Transport and Deposition in the Human Nasal Airway: A Computational Fluid Dynamics Model. , 2009, , .		0
425	Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH. Journal of the Air and Waste Management Association, 2009, 59, 321-331.	1.9	17
426	Source Identification of Chittagong Aerosol by Receptor Modeling. Environmental Engineering Science, 2009, 26, 679-689.	1.6	15
427	Seasonal variations of elemental carbon in urban aerosols as measured by two common thermal-optical carbon methods. Science of the Total Environment, 2009, 407, 5176-5183.	8.0	20
428	Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Science of the Total Environment, 2009, 407, 5071-5084.	8.0	61
429	Contemporary threats and air pollution. Atmospheric Environment, 2009, 43, 87-93.	4.1	37
430	Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmospheric Environment, 2009, 43, 2770-2780.	4.1	492
431	Designing ambient particulate matter monitoring program for source apportionment study by receptor modeling. Atmospheric Environment, 2009, 43, 3334-3344.	4.1	33
432	A chamber study of secondary organic aerosol formation by linalool ozonolysis. Atmospheric Environment, 2009, 43, 3935-3940.	4.1	50

#	Article	IF	CITATIONS
433	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmospheric Environment, 2009, 43, 3989-3997.	4.1	125
434	Rotational tools for factor analytic models. Journal of Chemometrics, 2009, 23, 91-100.	1.3	152
435	Indoor air pollution from particulate matter emissions in different households in rural areas of Bangladesh. Building and Environment, 2009, 44, 898-903.	6.9	96
436	Toxaphene analysis in Great Lakes fish: a comparison of GC-EI/MS/MS and GC-ECNI-MS, individual congener standard and technical mixture for quantification of toxaphene. Analytical and Bioanalytical Chemistry, 2009, 395, 457-463.	3.7	15
437	Secondary organic aerosol from α-pinene ozonolysis in dynamic chamber system. Indoor Air, 2009, 19, 335-345.	4.3	71
438	A spectral similarity measure using Bayesian statistics. Analytica Chimica Acta, 2009, 635, 157-161.	5.4	4
439	Application of Optimally Scaled Target Factor Analysis for Assessing Source Contribution of Ambient PM ₁₀ . Journal of the Air and Waste Management Association, 2009, 59, 1296-1307.	1.9	72
440	Vapor–gas/liquid nucleation experiments: A review of the challenges. Journal of Aerosol Science, 2009, 40, 733-746.	3.8	23
441	A Similarity Measure for Two-Dimensional Fluorescent Spectra. Applied Spectroscopy, 2009, 63, 810-814.	2.2	2
442	Chapter 1 Theory and Application of Atmospheric Source Apportionment. Developments in Environmental Science, 2009, 9, 1-33.	0.5	6
443	Environmental Chemometrics. , 2009, , 55-74.		2
444	Source apportionment of PM _{2.5} in Seoul, Korea. Atmospheric Chemistry and Physics, 2009, 9, 4957-4971.	4.9	263
445	Source Apportionment of Winter Submicron Prague Aerosols from Combined Particle Number Size Distribution and Gaseous Composition Data. Aerosol and Air Quality Research, 2009, 9, 209-236.	2.1	34
446	Characterization of fine aerosol and its inorganic components at two rural locations in New York State. Environmental Monitoring and Assessment, 2008, 144, 351-366.	2.7	21
447	Assessment of trends and present ambient concentrations of PM2.2 and PM10 in Dhaka, Bangladesh. Air Quality, Atmosphere and Health, 2008, 1, 125-133.	3.3	41
448	Editorial: Is there a future for chemometrics? Are we still needed?. Journal of Chemometrics, 2008, 22, 289-290.	1.3	9
449	Quantitative results from singleâ€particle characterization data. Journal of Chemometrics, 2008, 22, 528-532.	1.3	8
450	Comparison of two cluster analysis methods using single particle mass spectra. Atmospheric Environment, 2008, 42, 881-892.	4.1	33

#	Article	IF	CITATIONS
451	New Directions: Reactive Particles as a Source of Human Health Effectsâ~†. Atmospheric Environment, 2008, 42, 3192-3194.	4.1	12
452	Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmospheric Environment, 2008, 42, 6047-6056.	4.1	115
453	Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Science of the Total Environment, 2008, 397, 229-237.	8.0	74
454	Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Science of the Total Environment, 2008, 398, 133-144.	8.0	73
455	Urban air quality in the Asian region. Science of the Total Environment, 2008, 404, 103-112.	8.0	160
456	Numerical Simulations Investigating the Regional and Overall Deposition Efficiency of the Human Nasal Cavity. Inhalation Toxicology, 2008, 20, 1093-1100.	1.6	65
457	Atmospheric Mercury (Hg) in the Adirondacks: Concentrations and Sources. Environmental Science & amp; Technology, 2008, 42, 5644-5653.	10.0	79
458	Carbonaceous aerosol at two rural locations in New York State: Characterization and behavior. Journal of Geophysical Research, 2008, 113, .	3.3	16
459	Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 2008, , 269-284.	0.0	6
460	Development and evaluation of a particle-bound reactive oxygen species generator. Journal of Aerosol Science, 2008, 39, 168-174.	3.8	19
461	Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 2008, 39, 827-849.	3.8	812
462	Fibrous particle deposition in human nasal passage: The influence of particle length, flow rate, and geometry of nasal airway. Journal of Aerosol Science, 2008, 39, 1040-1054.	3.8	51
463	Characterization of products formed in the reaction of ozone with α-pinene: case for organic peroxides. Journal of Environmental Monitoring, 2008, 10, 966.	2.1	36
464	Apportionment of Ambient Primary and Secondary Fine Particulate Matter at the Pittsburgh National Energy Laboratory Particulate Matter Characterization Site Using Positive Matrix Factorization and a Potential Source Contributions Function Analysis. Journal of the Air and Waste Management Association, 2008, 58, 357-368.	1.9	16
465	The Use of Source Apportionment for Air Quality Management and Health Assessments. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 555-563.	2.3	29
466	Source Apportionment and Spatial Distributions of Coarse Particles During the Regional Air Pollution Study. Environmental Science & Technology, 2008, 42, 3524-3530.	10.0	36
467	Development and Laboratory Testing of an Automated Monitor for the Measurement of Atmospheric Particle-Bound Reactive Oxygen Species (ROS). Aerosol Science and Technology, 2008, 42, 629-635.	3.1	62
468	Key Scientific Findings and Policy- and Health-Relevant Insights from the U.S. Environmental Protection Agency's Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. Journal of the Air and Waste Management Association, 2008, 58, 3-92.	0.1	29

#	Article	IF	CITATIONS
469	Measurement of Fine Particulate Matter Nonvolatile and Semi-Volatile Organic Material with the Sunset Laboratory Carbon Aerosol Monitor. Journal of the Air and Waste Management Association, 2008, 58, 72-77.	1.9	16
470	Characterization of Ambient Fine Particles in the Northwestern Area and Anchorage, Alaska. Journal of the Air and Waste Management Association, 2008, 58, 1328-1340.	1.9	7
471	The U.S. Environmental Protection Agency's Particulate Matter Supersites Program: An Integrated Synthesis of Scientific Findings and Policy- and Health-Relevant Insights. Journal of the Air and Waste Management Association, 2008, 58, s-1-s-92.	1.9	7
472	A Special Issue of <i>JA&WMA</i> Supporting Key Scientific and Policy- and Health-Relevant Findings from EPA's Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. Journal of the Air and Waste Management Association, 2008, 58, 137-139.	1.9	13
473	Fine Particle Sources and Cardiorespiratory Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-Apportionment Methods. Environmental Health Perspectives, 2008, 116, 459-466.	6.0	236
474	Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India. Aerosol and Air Quality Research, 2008, 8, 423-436.	2.1	98
475	Estimation of Source Apportionment of Ambient PM _{2.5} at Western Coastal IMPROVE Site in USA. Journal of Korean Society for Atmospheric Environment, 2008, 24, 30-42.	1.1	6
476	Source characterization of ambient fine particles in the Los Angeles basin. Journal of Environmental Engineering and Science, 2007, 6, 343-353.	0.8	19
477	Characterization of Wintertime Reactive Oxygen Species Concentrations in Flushing, New York. Aerosol Science and Technology, 2007, 41, 97-111.	3.1	84
478	The Complexities of Air Pollution Regulation: the Need for an Integrated Research and Regulatory Perspective. Toxicological Sciences, 2007, 100, 318-327.	3.1	19
479	Performance Comparison of Scanning Electrical Mobility Spectrometers. Aerosol Science and Technology, 2007, 41, 360-368.	3.1	21
480	Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. Aerosol Science and Technology, 2007, 41, 179-201.	3.1	63
481	Sources of fine urban particulate matter in Detroit, MI. Chemosphere, 2007, 69, 1064-1074.	8.2	72
482	Effects of On-Road Highway Aerosol Exposures on Autonomic Responses in Aged, Spontaneously Hypertensive Rats. Inhalation Toxicology, 2007, 19, 1-12.	1.6	72
483	Source Identifications of Airborne Fine Particles Using Positive Matrix Factorization and U.S. Environmental Protection Agency Positive Matrix Factorization. Journal of the Air and Waste Management Association, 2007, 57, 811-819.	1.9	52
484	Factor Analysis of Submicron Particle Size Distributions near a Major United States–Canada Trade Bridge. Journal of the Air and Waste Management Association, 2007, 57, 190-203.	1.9	31
485	Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry. Journal of Geophysical Research, 2007, 112, .	3.3	35
486	Elements of the topology of nucleation rate surfaces in the vicinity of the triple point. Doklady Physical Chemistry, 2007, 417, 297-300.	0.9	0

#	Article	IF	CITATIONS
487	A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 549-558.	3.9	21
488	Comparison between sample-species specific uncertainties and estimated uncertainties for the source apportionment of the speciation trends network data. Atmospheric Environment, 2007, 41, 567-575.	4.1	34
489	Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmospheric Environment, 2007, 41, 506-518.	4.1	124
490	Spatial distribution of source locations for particulate nitrate and sulfate in the upper-midwestern United States. Atmospheric Environment, 2007, 41, 1831-1847.	4.1	45
491	Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmospheric Environment, 2007, 41, 4084-4096.	4.1	48
492	Wet deposition of mercury at a New York state rural site: Concentrations, fluxes, and source areas. Atmospheric Environment, 2007, 41, 4337-4348.	4.1	45
493	Source apportionment of time and size resolved ambient particulate matter measured with a rotating DRUM impactor. Atmospheric Environment, 2007, 41, 5921-5933.	4.1	48
494	Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmospheric Environment, 2007, 41, 6033-6047.	4.1	57
495	Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 2007, 41, 6762-6770.	4.1	136
496	Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS). Atmospheric Environment, 2007, 41, 8205-8218.	4.1	30
497	Source apportionment of fine particles utilizing partially speciated carbonaceous aerosol data at two rural locations in New York State. Atmospheric Environment, 2007, 41, 7923-7939.	4.1	35
498	Study of urban atmospheric pollution in Navarre (Northern Spain). Environmental Monitoring and Assessment, 2007, 134, 137-151.	2.7	17
499	Source Apportionment of Air Particulate Matter by Chemical Mass Balance (CMB) and Comparison with Positive Matrix Factorization (PMF) Model. Aerosol and Air Quality Research, 2007, 7, 446-468.	2.1	54
500	Real-Time Characterization of the Composition of Individual Particles Emitted From Ultrafine Particle Concentrators. Aerosol Science and Technology, 2006, 40, 437-455.	3.1	23
501	An ion chromatographic analysis of water-soluble, short-chain organic acids in ambient particulate matter. International Journal of Environmental Analytical Chemistry, 2006, 86, 767-777.	3.3	17
502	Comparison of Source Apportionments of Fine Particulate Matter at Two San Jose Speciation Trends Network Sites. Journal of the Air and Waste Management Association, 2006, 56, 1287-1300.	1.9	28
503	Impact of Banning of Two-Stroke Engines on Airborne Particulate Matter Concentrations in Dhaka, Bangladesh. Journal of the Air and Waste Management Association, 2006, 56, 85-89.	1.9	27
504	Identification of Fulvic Acids and Sulfated and Nitrated Analogues in Atmospheric Aerosol by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2006, 78, 8299-8304.	6.5	151

#	Article	IF	CITATIONS
505	Seasonal Variation of 2-Methyltetrols in Ambient Air Samples. Environmental Science & Technology, 2006, 40, 6934-6937.	10.0	57
506	Influence of Atmospheric Dispersion and New Particle Formation Events on Ambient Particle Number Concentration in Rochester, United States, and Toronto, Canada. Journal of the Air and Waste Management Association, 2006, 56, 431-443.	1.9	47
507	Airflow and Deposition of Nano-Particles in a Human Nasal Cavity. Aerosol Science and Technology, 2006, 40, 463-476.	3.1	131
508	Spatial and temporal variability of black carbon in New York City. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	41
509	Source identification of airborne PM2.5at the St. Louis-Midwest Supersite. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	77
510	Sources of Fine Particulate Species in Ambient Air over Lake Champlain Basin, VT. Journal of the Air and Waste Management Association, 2006, 56, 1607-1620.	1.9	7
511	Source identification for fine aerosols in Mammoth Cave National Park. Atmospheric Research, 2006, 80, 309-322.	4.1	47
512	Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles. Atmospheric Research, 2006, 82, 591-604.	4.1	16
513	Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air, 2006, 16, 204-215.	4.3	88
514	PM source apportionment and health effects: 1. Intercomparison of source apportionment results. Journal of Exposure Science and Environmental Epidemiology, 2006, 16, 275-286.	3.9	188
515	PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. Journal of Exposure Science and Environmental Epidemiology, 2006, 16, 300-310.	3.9	131
516	PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. Journal of Exposure Science and Environmental Epidemiology, 2006, 16, 311-320.	3.9	127
517	Cluster analysis of single particle mass spectra measured at Flushing, NY. Analytica Chimica Acta, 2006, 555, 47-56.	5.4	20
518	Concentration and Sources of PM10 and its Constituents in Alsasua, Spain. Water, Air, and Soil Pollution, 2006, 174, 385-404.	2.4	32
519	Baltimore Supersite: Highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses. Atmospheric Environment, 2006, 40, 224-237.	4.1	42
520	Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmospheric Environment, 2006, 40, 360-377.	4.1	154
521	Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmospheric Environment, 2006, 40, 396-410.	4.1	102
522	The concentrations and sources of PM2.5 in metropolitan New York City. Atmospheric Environment, 2006, 40, 312-332.	4.1	120

#	Article	IF	CITATIONS
523	Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. Atmospheric Environment, 2006, 40, 3788-3801.	4.1	75
524	Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh. Science of the Total Environment, 2006, 358, 36-45.	8.0	40
525	Characterization of fine particle sources in the Great Smoky Mountains area. Science of the Total Environment, 2006, 368, 781-794.	8.0	40
526	Source Investigation for Ambient PM2.5in Indianapolis, IN. Aerosol Science and Technology, 2006, 40, 898-909.	3.1	21
527	An Intercomparison of Measurement Methods for Carbonaceous Aerosol in the Ambient Air in New York City. Aerosol Science and Technology, 2006, 40, 788-795.	3.1	58
528	Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Science and Technology, 2006, 40, 811-826.	3.1	50
529	Major Source Categories for PM2.5in Pittsburgh using PMF and UNMIX. Aerosol Science and Technology, 2006, 40, 910-924.	3.1	84
530	Application of PSCF and CPF to PMF-Modeled Sources of PM2.5in Pittsburgh. Aerosol Science and Technology, 2006, 40, 952-961.	3.1	132
531	Exposure to airborne particulate matter in the ambient, indoor, and occupational environments. Clinics in Occupational and Environmental Medicine, 2006, 5, 747-71.	0.5	16
532	Multi-element Analysis and Characterization of Atmospheric Particulate Pollution in Dhaka. Aerosol and Air Quality Research, 2006, 6, 334-359.	2.1	31
533	Measurements of Fine Particle Mass Concentrations Using Continuous and Integrated Monitors in Eastern US Cities. Aerosol Science and Technology, 2005, 39, 261-275.	3.1	17
534	An algorithm for semi-empirical design of nucleation rate surface. Journal of Colloid and Interface Science, 2005, 290, 107-116.	9.4	4
535	Application of PLS and Back-Propagation Neural Networks for the estimation of soil properties. Chemometrics and Intelligent Laboratory Systems, 2005, 75, 23-30.	3.5	62
536	Predicting bulk ambient aerosol compositions from ATOFMS data with ART-2a and multivariate analysis. Analytica Chimica Acta, 2005, 549, 179-187.	5.4	26
537	Measurement of total PM2.5mass (nonvolatile plus semivolatile) with the Filter Dynamic Measurement System tapered element oscillating microbalance monitor. Journal of Geophysical Research, 2005, 110, .	3.3	87
538	A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmospheric Environment, 2005, 39, 193-201.	4.1	183
539	Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmospheric Environment, 2005, 39, 3719-3724.	4.1	146
540	Receptor modeling for multiple time resolved species: The Baltimore supersite. Atmospheric Environment, 2005, 39, 3751-3762.	4.1	78

#	Article	IF	CITATIONS
541	Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization. Atmospheric Environment, 2005, 39, 5934-5946.	4.1	71
542	Identification of Fine Particle Sources in Mid-Atlantic US Area. Water, Air, and Soil Pollution, 2005, 168, 391-421.	2.4	25
543	Measurement of Particle-Bound Reactive Oxygen Species in Rubidoux Aerosols. Journal of Atmospheric Chemistry, 2005, 50, 49-58.	3.2	116
544	Evaluation of Continuous and Filter-Based Methods for Measuring PM _{2.5} Mass Concentration. Aerosol Science and Technology, 2005, 39, 290-303.	3.1	19
545	Workgroup Report: Workshop on Source Apportionment of Particulate Matter Health Effects—Intercomparison of Results and Implications. Environmental Health Perspectives, 2005, 113, 1768-1774.	6.0	143
546	Improving Source Apportionment of Fine Particles in the Eastern United States Utilizing Temperature-Resolved Carbon Fractions. Journal of the Air and Waste Management Association, 2005, 55, 1456-1463.	1.9	32
547	Fiber Classification and the Influence of Average Air Humidity. Aerosol Science and Technology, 2005, 39, 1056-1063.	3.1	21
548	Investigation of Sources of Atmospheric Aerosol at a Hot Spot Area in Dhaka, Bangladesh. Journal of the Air and Waste Management Association, 2005, 55, 227-240.	1.9	56
549	Estimation of Organic Carbon Blank Values and Error Structures of the Speciation Trends Network Data for Source Apportionment. Journal of the Air and Waste Management Association, 2005, 55, 1190-1199.	1.9	72
550	Source Identification of Fine Particles in Washington, DC, by Expanded Factor Analysis Modeling. Environmental Science & Technology, 2005, 39, 1129-1137.	10.0	50
551	Comparison between Back-Trajectory Based Modeling and Lagrangian Backward Dispersion Modeling for Locating Sources of Reactive Gaseous Mercury. Environmental Science & Technology, 2005, 39, 1715-1723.	10.0	80
552	Sources of Fine Particles in a Rural Midwestern U.S. Area. Environmental Science & Technology, 2005, 39, 4953-4960.	10.0	77
553	Reconciling Trajectory Ensemble Receptor Model Results with Emissions. Environmental Science & Technology, 2005, 39, 7980-7983.	10.0	22
554	Spatial Variability of Fine Particle Mass, Components, and Source Contributions during the Regional Air Pollution Study in St. Louis. Environmental Science & Technology, 2005, 39, 4172-4179.	10.0	102
555	Performance evaluation of continuous mass concentration monitors. Journal of Aerosol Science, 2005, 36, 95-109.	3.8	14
556	Mining airborne particulate size distribution data by positive matrix factorization. Journal of Geophysical Research, 2005, 110, .	3.3	23
557	Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. Journal of Geophysical Research, 2005, 110, .	3.3	37
558	COMPARISON BETWEEN CONDITIONAL PROBABILITY FUNCTION AND NONPARAMETRIC RECESSION FOR THE SOURCE DIRECTION OF FINE PARTICLES. Journal of Aerosol Science, 2004, 35, S857-S858.	3.8	1

#	Article	IF	CITATIONS
559	On-Road Exposure to Highway Aerosols. 2. Exposures of Aged, Compromised Rats. Inhalation Toxicology, 2004, 16, 41-53.	1.6	44
560	Particle Collection Characteristics of a Prototype Electrostatic Precipitator (ESP) for a Differential TEOM System. Aerosol Science and Technology, 2004, 38, 46-51.	3.1	8
561	Multilinear Model for Spatial Pattern Analysis of the Measurement of Haze and Visual Effects Project. Environmental Science & Technology, 2004, 38, 544-554.	10.0	12
562	Comparison of two trajectory based models for locating particle sources for two rural New York sites. Atmospheric Environment, 2004, 38, 1955-1963.	4.1	61
563	Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites. Atmospheric Environment, 2004, 38, 5247-5256.	4.1	30
564	Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmospheric Environment, 2004, 38, 3025-3038.	4.1	246
565	The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. Atmospheric Environment, 2004, 38, 5193-5204.	4.1	199
566	Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models. Atmospheric Environment, 2004, 38, 5353-5361.	4.1	50
567	Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 2004, 38, 3349-3362.	4.1	195
568	Comparison between Conditional Probability Function and Nonparametric Regression for Fine Particle Source Directions. Atmospheric Environment, 2004, 38, 4667-4673.	4.1	141
569	Advanced factor analysis for multiple time resolution aerosol composition data. Atmospheric Environment, 2004, 38, 4909-4920.	4.1	75
570	Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment, 2004, 38, 5901-5910.	4.1	62
571	Atmospheric gaseous mercury concentrations in New York State: relationships with meteorological data and other pollutants. Atmospheric Environment, 2004, 38, 6431-6446.	4.1	73
572	Sources of fine particle composition in New York city. Atmospheric Environment, 2004, 38, 6521-6529.	4.1	108
573	Total Potential Source Contribution Function Analysis of Trace Elements Determined in Aerosol Samples Collected near Lake Huron. Environmental Science & Technology, 2004, 38, 4276-4284.	10.0	25
574	On-Road Exposure to Highway Aerosols. 1. Aerosol and Gas Measurements. Inhalation Toxicology, 2004, 16, 31-39.	1.6	79
575	Advanced Factor Analysis on Pittsburgh Particle Size-Distribution Data Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 118-132.	3.1	107
576	Source Apportionment of Fine Particles in Washington, DC, Utilizing Temperature-Resolved Carbon Fractions. Journal of the Air and Waste Management Association, 2004, 54, 773-785.	1.9	148

#	Article	IF	CITATIONS
577	Characteristics of Nucleation and Growth Events of Ultrafine Particles Measured in Rochester, NY. Environmental Science & Technology, 2004, 38, 1933-1940.	10.0	94
578	Condensation Activation and Nucleation on Heterogeneous Aerosol Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 9147-9157.	2.6	26
579	Source Identification of Volatile Organic Compounds in Houston, Texas. Environmental Science & Technology, 2004, 38, 1338-1347.	10.0	67
580	Analysis of Ambient Particle Size Distributions Using Unmix and Positive Matrix Factorization. Environmental Science & Technology, 2004, 38, 202-209.	10.0	112
581	Experimental Studies of Heterogeneous Nucleation in the Turbulent Mixing Condensation Nuclei Counter. Journal of Physical Chemistry B, 2004, 108, 4558-4564.	2.6	15
582	Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. Journal of Geophysical Research, 2004, 109, .	3.3	91
583	Measurement of Ultrafine Particle Size Distributions from Coal-, Oil-, and Gas-Fired Stationary Combustion Sources. Journal of the Air and Waste Management Association, 2004, 54, 1494-1505.	1.9	97
584	Factor Analysis of Seattle Fine Particles. Aerosol Science and Technology, 2004, 38, 724-738.	3.1	58
585	Open Access to theAerosol Science and TechnologyArchive. Aerosol Science and Technology, 2004, 38, iii-iii.	3.1	0
586	Re: Source Apportionment of Fine Particles in Washington, DC, Utilizing Temperature-Resolved Carbon Fractions. Journal of the Air and Waste Management Association, 2004, 54, 1011-1012.	1.9	1
587	A Preliminary Investigation into the Possible Emission Sources for Atmospheric Mercury Found in the Lake Champlain Basin. , 2004, , 21-37.		1
588	Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment, 2003, 37, 545-562.	4.1	393
589	Composition of the Finnish Arctic aerosol: collection and analysis of historic filter samples. Atmospheric Environment, 2003, 37, 2355-2364.	4.1	45
590	Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. Atmospheric Environment, 2003, 37, 3289-3302.	4.1	83
591	Atmospheric aerosol over Finnish Arctic: source analysis by the multilinear engine and the potential source contribution function. Atmospheric Environment, 2003, 37, 4381-4392.	4.1	44
592	Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. Atmospheric Environment, 2003, 37, 5009-5021.	4.1	54
593	Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Atmospheric Environment, 2003, 37, 4997-5007.	4.1	88
594	Recent developments in receptor modeling. Journal of Chemometrics, 2003, 17, 255-265.	1.3	274

#	Article	IF	CITATIONS
595	New convergence criterion for multi-variable curve resolution. Analytica Chimica Acta, 2003, 495, 195-203.	5.4	4
596	Application of modified alternating least squares regression to spectroscopic image analysis. Analytica Chimica Acta, 2003, 476, 93-109.	5.4	110
597	Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 2003, 490, 277-289.	5.4	531
598	Data mining of the relationship between volatile organic components and transient high ozone formation. Analytica Chimica Acta, 2003, 490, 153-158.	5.4	11
599	The evolution of chemometrics. Analytica Chimica Acta, 2003, 500, 365-377.	5.4	124
600	Sample-specific standard error of prediction for partial least squares regression. TrAC - Trends in Analytical Chemistry, 2003, 22, 330-334.	11.4	44
601	Recent developments in CANDECOMP/PARAFAC algorithms: a critical review. Chemometrics and Intelligent Laboratory Systems, 2003, 65, 119-137.	3.5	208
602	Comparison of Positive Matrix Factorization and Multilinear Engine for the source apportionment of particulate pollutants. Chemometrics and Intelligent Laboratory Systems, 2003, 66, 15-28.	3.5	73
603	New convergence criterion for multi-variable curve resolution. Analytica Chimica Acta, 2003, 495, 195-195.	5.4	1
604	Origins of fine aerosol mass in the western United States using positive matrix factorization. Journal of Geophysical Research, 2003, 108, .	3.3	31
605	General Requirements and Recommendations for Vapor Nucleation Rate Experiments. Aerosol Science and Technology, 2003, 37, 183-186.	3.1	1
606	Ambient Silver Concentration Anomaly in the Finnish Arctic Lower Atmosphere. Environmental Science & Technology, 2003, 37, 5537-5544.	10.0	3
607	Advanced Factor Analysis of Spatial Distributions of PM2.5in the Eastern United States. Environmental Science & Technology, 2003, 37, 2460-2476.	10.0	60
608	Source Identification of Atlanta Aerosol by Positive Matrix Factorization. Journal of the Air and Waste Management Association, 2003, 53, 731-739.	1.9	325
609	Response to Comment on "Locating PCB Sources in Chicago: Receptor Modeling and Field Sampling― Environmental Science & Technology, 2003, 37, 5838-5838.	10.0	1
610	Locating and Quantifying PCB Sources in Chicago:Â Receptor Modeling and Field Sampling. Environmental Science & Technology, 2003, 37, 681-690.	10.0	98
611	Measured summertime concentrations of particulate components, Hg0, and speciated polycyclic aromatic hydrocarbons at rural sites in New York State. Environmental Pollution, 2003, 123, 413-425.	7.5	20
612	Source identification of PM2.5 in an arid Northwest U.S. City by positive matrix factorization. Atmospheric Research, 2003, 66, 291-305.	4.1	151

#	Article	IF	CITATIONS
613	Comparison of Experimental and Theoretical Heterogeneous Nucleation on Ultrafine Carbon Particles. Journal of Physical Chemistry B, 2003, 107, 13813-13822.	2.6	21
614	Identification of Sources Contributing to Mid-Atlantic Regional Aerosol. Journal of the Air and Waste Management Association, 2002, 52, 1186-1205.	1.9	90
615	Projection of Residential Radon Lung Cancer Risks: The BEIR VI Risk Models - (Letter to the Editor). Radiation Protection Dosimetry, 2002, 102, 371-373.	0.8	4
616	Remarks on the article ?Bilinear estimation of pollution source profiles and amounts by using multivariate receptor models?. Environmetrics, 2002, 13, 803-805.	1.4	0
617	Utilizing wind direction and wind speed as independent variables in multilinear receptor modeling studies. Chemometrics and Intelligent Laboratory Systems, 2002, 60, 25-41.	3.5	25
618	Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 2002, 60, 253-264.	3.5	348
619	Rebuttal to "Unfilterable 'geoaerosols', their use in the search for thermal, mineral and mineralized waters, and their possible influence on the origin of certain types of mineral waters" by B. Krcmar and T. Vylita, published in Environmental Geology 40(6):678–682. Environmental Geology, 2002, 41, 984-985.	1.2	0
620	Atmospheric Aerosol over Vermont:Â Chemical Composition and Sources. Environmental Science & Technology, 2001, 35, 4604-4621.	10.0	372
621	Comparative Application of Multiple Receptor Methods To Identify Aerosol Sources in Northern Vermont. Environmental Science & Technology, 2001, 35, 4622-4636.	10.0	141
622	Enhanced Airborne Polychlorinated Biphenyl (PCB) Concentrations and Chlorination Downwind of Lake Ontario. Environmental Science & amp; Technology, 2001, 35, 3280-3286.	10.0	18
623	Quantification of ATOFMS Data by Multivariate Methods. Analytical Chemistry, 2001, 73, 3535-3541.	6.5	45
624	Nucleation Rate Surface Topologies for Binary Systemsâ€. Journal of Physical Chemistry B, 2001, 105, 11817-11822.	2.6	9
625	Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environmental Science & Technology, 2001, 35, 4214-4226.	10.0	267
626	A Transition from Heterogeneous to Homogeneous Nucleation in the Turbulent Mixing CNC. Aerosol Science and Technology, 2001, 35, 586-595.	3.1	11
627	Beta Gauge for Aerosol Mass Measurement. Aerosol Science and Technology, 2001, 35, 840-843.	3.1	34
628	Equation-oriented system: an efficient programming approach to solve multilinear and polynomial equations by the conjugate gradient algorithm. Chemometrics and Intelligent Laboratory Systems, 2001, 55, 13-22.	3.5	17
629	Variable selection in classification of environmental soil samples for partial least square and neural network models. Analytica Chimica Acta, 2001, 446, 231-242.	5.4	38
630	Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data. Analytica Chimica Acta, 2001, 446, 327-341.	5.4	22

#	Article	IF	CITATIONS
631	Multiple Imputation for Multivariate Data with Missing and Belowâ€Threshold Measurements: Time‧eries Concentrations of Pollutants in the Arctic. Biometrics, 2001, 57, 22-33.	1.4	113
632	Identification of sources of pollutants in precipitation measured at the mid-Atlantic US coast using potential source contribution function (PSCF). Atmospheric Environment, 2001, 35, 3979-3986.	4.1	35
633	Sources of fine particle composition in the northeastern US. Atmospheric Environment, 2001, 35, 5277-5286.	4.1	271
634	Binary N-octanol–sulfur hexafluoride nucleation. Journal of Chemical Physics, 2001, 115, 810-816.	3.0	9
635	Two channel vapor nucleation in the vicinity of the triple point. Journal of Chemical Physics, 2001, 114, 9852-9855.	3.0	12
636	CRITICAL EMBRYO SIZES AT THE CONDITIONS OF SPINODAL DECOMPOSITIONS. Journal of Aerosol Science, 2001, 32, 17-18.	3.8	5
637	Improvement of the homogeneous nucleation rate measurements in a static diffusion chamber with use of a CCD camera. AIP Conference Proceedings, 2000, , .	0.4	0
638	Resolution of multicomponent peaks by orthogonal projection approach, positive matrix factorization and alternating least squares. Analytica Chimica Acta, 2000, 411, 145-155.	5.4	44
639	Estimation of the heteroscedastic noise in large data arrays. Analytica Chimica Acta, 2000, 412, 177-184.	5.4	9
640	A prospective assessment of the surface collection for estimating exposure. Journal of Environmental Radioactivity, 2000, 51, 79-98.	1.7	4
641	Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 2000, 34, 3319-3329.	4.1	252
642	Use of a turbulent mixing CNC to study the influence of composition and vapor properties on heterogenous nucleation. AIP Conference Proceedings, 2000, , .	0.4	0
643	n-Pentanol–helium homogeneous nucleation rates. Journal of Chemical Physics, 2000, 113, 1971-1975.	3.0	19
644	Identification of Sources of Phoenix Aerosol by Positive Matrix Factorization. Journal of the Air and Waste Management Association, 2000, 50, 1308-1320.	1.9	202
645	Health Risks Due to Radon in Drinking Water. Environmental Science & Technology, 2000, 34, 921-926.	10.0	89
646	Characterization of Uncertainty and Variability in Residential Radon Cancer Risks. Annals of the New York Academy of Sciences, 1999, 895, 245-272.	3.8	31
647	Calibration transfer as a data reconstruction problem. Analytica Chimica Acta, 1999, 384, 193-205.	5.4	26
648	Hygroscopicity of Diesel Aerosols. Water, Air, and Soil Pollution, 1999, 112, 247-257.	2.4	30

#	Article	IF	CITATIONS
649	Identification of source nature and seasonal variations of Arctic aerosol by the multilinear engine. Atmospheric Environment, 1999, 33, 2549-2562.	4.1	60
650	Locations and preferred pathways of possible sources of Arctic aerosol. Atmospheric Environment, 1999, 33, 2229-2239.	4.1	40
651	Mixed multiway analysis of airborne particle composition data. Journal of Chemometrics, 1999, 13, 343-352.	1.3	13
652	"Geoaerosols― their origin, transport and paradoxical behavior: a challenge to aerosol science. Journal of Aerosol Science, 1999, 30, S111-S112.	3.8	8
653	Classification of Single Particles Analyzed by ATOFMS Using an Artificial Neural Network, ART-2A. Analytical Chemistry, 1999, 71, 860-865.	6.5	326
654	Receptor Modeling Assessment of Particle Total Exposure Assessment Methodology Data. Environmental Science & Technology, 1999, 33, 3645-3652.	10.0	106
655	Identification of Source Nature and Seasonal Variations of Arctic Aerosol byPositive Matrix Factorization. Journals of the Atmospheric Sciences, 1999, 56, 249-260.	1.7	119
656	Environmental Policy Analysis: Modeling Atmospheric Particulate Matter. Environmental Science & Technology, 1999, 33, 80A-86A.	10.0	24
657	Source Apportionment of Soil Samples by the Combination of Two Neural Networks Based on Computer-Controlled Scanning Electron Microscopy. Journal of the Air and Waste Management Association, 1999, 49, 773-783.	1.9	12
658	Pattern Recognition of Soil Samples Based on the Microbial Fatty Acid Contents. Environmental Science & Technology, 1999, 33, 3524-3530.	10.0	17
659	<title>Mixed multiway analysis of airborne particle composition data</title> . , 1999, 3854, 36.		0
660	<title>Multiple site receptor modeling with a minimal spanning tree combined with a Kohonen neural network</title> . , 1999, , .		0
661	Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 1998, 12, 357-364.	1.3	50
662	A fuzzy adaptive resonance theory—supervised predictive mapping neural network applied to the classification of multivariate chemical data. Chemometrics and Intelligent Laboratory Systems, 1998, 41, 161-170.	3.5	13
663	Three-way (PARAFAC) factor analysis: examination and comparison of alternative computational methods as applied to ill-conditioned data. Chemometrics and Intelligent Laboratory Systems, 1998, 43, 25-42.	3.5	63
664	Multiway analysis of airborne particle composition data. Journal of Aerosol Science, 1998, 29, S515-S516.	3.8	1
665	Surface Topology of the Ion-Induced Vapor Nucleation Rate. Aerosol Science and Technology, 1998, 29, 547-556.	3.1	3
666	Atmospheric aerosol over Alaska: 2. Elemental composition and sources. Journal of Geophysical Research, 1998, 103, 19045-19057.	3.3	710

#	Article	IF	CITATIONS
667	Atmospheric aerosol over Alaska: 1. Spatial and seasonal variability. Journal of Geophysical Research, 1998, 103, 19035-19044.	3.3	43
668	Relationship of phase diagrams and surfaces of new phase nucleation rates. Journal of Chemical Physics, 1998, 109, 1435-1444.	3.0	21
669	Positive matrix factorization applied to a curve resolution problem. , 1998, 12, 357.		1
670	A New Technique to Measure the Mobility Size of Ultrafine Radioactive Particles. Aerosol Science and Technology, 1997, 27, 381-393.	3.1	9
671	Characterization of the Gent Stacked Filter Unit PM10Sampler. Aerosol Science and Technology, 1997, 27, 726-735.	3.1	237
672	Deposition of Particles in a Chamber as a Function of Ventilation Rate. Aerosol Science and Technology, 1997, 27, 62-72.	3.1	42
673	Experimental Assessment of the Short- and Long-Term Effects of222Rn from Domestic Shower Water on the Dose Burden Incurred in Normally Occupied Homes. Environmental Science & Technology, 1997, 31, 1822-1829.	10.0	21
674	Dynamic Model for Assessing222Rn and Progeny Exposure from Showering with Radon-Bearing Water. Environmental Science & Technology, 1997, 31, 1589-1596.	10.0	16
675	Electrical mobility and size distribution of aged 212Pb nanometer carriers in nitrogen gas. Journal of Aerosol Science, 1997, 28, 1465-1477.	3.8	5
676	The chemical mass balance as a multivariate calibration problem. Chemometrics and Intelligent Laboratory Systems, 1997, 37, 5-14.	3.5	16
677	Classification of single particles by neural networks based on the computer-controlled scanning electron microscopy data. Analytica Chimica Acta, 1997, 348, 375-388.	5.4	50
678	Solving the Chemical Mass Balance Problem Using an Artificial Neural Network. Environmental Science & Technology, 1996, 30, 531-535.	10.0	42
679	Evaluation of spatial patterns of fine particle sulfur and lead concentrations in New South Wales, Australia. Atmospheric Environment, 1996, 30, 9-24.	4.1	15
680	The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions. Atmospheric Environment, 1996, 30, 1147-1157.	4.1	43
681	Hygroscopicity of indoor aerosols and its influence on the deposition of inhaled radon decay products. Environment International, 1996, 22, 941-947.	10.0	5
682	Natural radiation environment VI. Environment International, 1996, 22, 1-2.	10.0	4
683	Hygroscopic Growth of Assorted Indoor Aerosols. Aerosol Science and Technology, 1996, 24, 151-160.	3.1	45
684	The initial atmospheric behavior of radon decay products. Journal of Radioanalytical and Nuclear Chemistry, 1996, 203, 353-375.	1.5	23

PHILIP K. HOPKE

#	Article	IF	CITATIONS
685	Analysis of source contributions to the ambient aerosol sample by simulated annealing. Chemometrics and Intelligent Laboratory Systems, 1996, 34, 275-281.	3.5	10
686	Kohonen neural network as a pattern recognition method based on the weight interpretation. Analytica Chimica Acta, 1996, 334, 57-66.	5.4	29
687	Source Apportionment Study of Nitrogen Species Measured in Southern California in 1987. Journal of Environmental Engineering, ASCE, 1996, 122, 183-190.	1.4	28
688	Possible Sources for Some Trace Elements Found in Airborne Particles and Precipitation in Dorset, Ontario. Journal of the Air and Waste Management Association, 1996, 46, 1035-1047.	1.9	35
689	Experimental study of ion-induced nucleation of volatile organic compounds by radon decay. , 1996, , 50-53.		0
690	Electret Method for Continuous Measurement of the Concentration of Radon in Water. Health Physics, 1995, 68, 110-114.	0.5	5
691	Classification of airborne particles by analytical scanning electron microscopy imaging and a modified Kohonen neural network (3MAP). Analytica Chimica Acta, 1995, 310, 1-14.	5.4	17
692	The use of bootstrapping to estimate conditional probability fields for source locations of airborne pollutants. Chemometrics and Intelligent Laboratory Systems, 1995, 30, 69-79.	3.5	26
693	How to start surfing the internet. Chemometrics and Intelligent Laboratory Systems, 1995, 30, 1-9.	3.5	0
694	A study on the potential sources of air pollutants observed at Tjörn, Sweden. Environmental Science and Pollution Research, 1995, 2, 107-115.	5.3	23
695	Hygroscopic Growth of Consumer Spray Products. Aerosol Science and Technology, 1995, 23, 331-340.	3.1	9
696	The Mixture Resolution Problem Applied to Airborne Particle Source Apportionment. Handbook of Environmental Chemistry, 1995, , 47-86.	0.4	6
697	SO2Oxidation and H2O-H2SO4Binary Nucleation by Radon Decay. Aerosol Science and Technology, 1995, 23, 411-421.	3.1	6
698	Assessment of the Exposure to and Dose from Radon Decay Products in Normally Occupied Homes. Environmental Science & Technology, 1995, 29, 1359-1364.	10.0	52
699	Sources of fine particle lead, bromine, and elemental carbon in southeastern Australia. Science of the Total Environment, 1995, 175, 65-79.	8.0	13
700	A novel method to study radon and radon progeny emanation from water. Journal of Aerosol Science, 1995, 26, S575-S576.	3.8	0
701	A System for Aerodynamically Sizing Ultrafine Radioactive Particles. Aerosol Science and Technology, 1995, 23, 121-130.	3.1	10
702	Projection of Prim's minimal spanning tree into a Kohonen neural network for identification of airborne particle sources by their multielement trace patterns. Analytica Chimica Acta, 1994, 291, 1-18.	5.4	24

#	Article	IF	CITATIONS
703	ICRM meets for the first time. Chemometrics and Intelligent Laboratory Systems, 1994, 25, 77.	3.5	0
704	First conference on three-way methods in chemistry (TRIC). Chemometrics and Intelligent Laboratory Systems, 1994, 22, 157.	3.5	0
705	An adaptive resonance theory based artificial neural network (ART-2a) for rapid identification of airborne particle shapes from their scanning electron microscopy images. Chemometrics and Intelligent Laboratory Systems, 1994, 25, 367-387.	3.5	20
706	Comparison of the source locations and seasonal patterns for acidic species in precipitation and ambient particles in Southern Ontario, Canada. Science of the Total Environment, 1994, 143, 245-260.	8.0	18
707	Evaluation of several air cleaners for reducing indoor radon progeny. Journal of Aerosol Science, 1994, 25, 395-405.	3.8	8
708	Hygroscopicity of consumer spray product aerosol particles. Journal of Aerosol Science, 1994, 25, 1341-1351.	3.8	9
709	04.0.05 A study on the sources of air pollutants observed at Tjörn, Sweden. Journal of Aerosol Science, 1994, 25, 31-32.	3.8	1
710	Receptor modeling of airborne ionic species collected in SCAQS. Atmospheric Environment, 1994, 28, 1447-1470.	4.1	50
711	Exploration of multivariate atmospheric particulate compositional data by projection pursuit. Atmospheric Environment, 1994, 28, 1411-1424.	4.1	7
712	Use of Chain Code Histogram Method to Quantify Airborne Particle Shapes. Aerosol Science and Technology, 1994, 21, 210-218.	3.1	4
713	Visual Neural Mapping Technique for Locating Fine Airborne Particles Sources. Environmental Science & Technology, 1994, 28, 1015-1022.	10.0	13
714	Airborne Particle Classification with a Combination of Chemical Composition and Shape Index Utilizing an Adaptive Resonance Artificial Neural Network. Environmental Science & Technology, 1994, 28, 1921-1928.	10.0	46
715	Use of Multiple Fractal Dimensions to Quantify Airborne Particle Shape. Aerosol Science and Technology, 1994, 20, 161-168.	3.1	13
716	Multiple Site Receptor Modeling with a Minimal Spanning Tree Combined with a Neural Network. Environmental Science & Technology, 1994, 28, 1023-1030.	10.0	18
717	Neutralization of Thoron Progeny in Gases. Health Physics, 1994, 67, 155-161.	0.5	4
718	Extreme-value estimation applied to aerosol size distributions and related environmental problems. Journal of Research of the National Institute of Standards and Technology, 1994, 99, 361.	1.2	6
719	Evaluation of Room Air Cleaners for the Reduction of Exposure and Dose to Indoor Radon Progeny. Radiation Protection Dosimetry, 1994, 56, 55-60.	0.8	2
720	Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. Analytica Chimica Acta, 1993, 277, 369-380.	5.4	53

#	Article	IF	CITATIONS
721	Reference data sets for chemometrical methods testing. Chemometrics and Intelligent Laboratory Systems, 1993, 19, 35-41.	3.5	32
722	Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemometrics and Intelligent Laboratory Systems, 1993, 19, 187-199.	3.5	39
723	HO x production due to radon decay in air. Journal of Atmospheric Chemistry, 1993, 17, 375-390.	3.2	8
724	Nanometer and ultrafine aerosols from radon radiolysis. Journal of Aerosol Science, 1993, 24, 393-407.	3.8	27
725	Analysis of the performance of a radon mitigation system based on charcoal beds. Environmental Technology (United Kingdom), 1993, 14, 401-412.	2.2	4
726	Initial Size Distributions and Hygroscopicity of Indoor Combustion Aerosol Particles. Aerosol Science and Technology, 1993, 19, 305-316.	3.1	112
727	Qualitative determination of source regions of aerosol in Canadian high Arctic. Environmental Science & Technology, 1993, 27, 2063-2071.	10.0	143
728	Potential for Ion-induced Nucleation of Volatile Organic Compounds by Radon Decay in Indoor Environments. Aerosol Science and Technology, 1993, 19, 80-93.	3.1	10
729	A receptorâ€oriented methodology for determining source regions of particulate sulfate observed at Dorset, Ontario. Journal of Geophysical Research, 1993, 98, 16839-16849.	3.3	84
730	Evaluation of the Effectiveness of Several Air Cleaners for Reducing the Hazard from Indoor Radon Progeny. Aerosol Science and Technology, 1993, 19, 268-278.	3.1	18
731	Experimental study of ionâ€induced nucleation by radon decay. Journal of Chemical Physics, 1993, 99, 9972-9978.	3.0	39
732	Nanogram Determination of Indium Using Epithermal Neutrons and Its Application in Potential Source Contribution Function of Airborne Particulate Matter in the Arctic Aerosol. Nuclear Science and Engineering, 1992, 110, 79-83.	1.1	6
733	The Measurement of Activity-Weighted Size Distributions of Radon Progeny. Health Physics, 1992, 63, 560-570.	0.5	23
734	Measurement of SO2 Effects on the 218Po Ion Mobility Spectrum by Alpha-track Detection. Health Physics, 1992, 62, 51-57.	0.5	12
735	GAMMA DISTRIBUTION AND HOUSE 222Rn MEASUREMENTS. Health Physics, 1992, 63, 205-208.	0.5	19
736	The application of three-mode factor analysis (TMFA) to receptor modeling of SCENES particle data. Atmospheric Environment Part A General Topics, 1992, 26, 1701-1711.	1.3	7
737	A System to Measure the Hygroscopicity of Aerosol Particles. Aerosol Science and Technology, 1992, 17, 25-35.	3.1	53
738	Elemental source signatures of aerosols from the Canadian high Arctic. Environmental Pollution, 1992, 75, 181-187.	7.5	10

#	Article	IF	CITATIONS
739	Inspiratory deposition of ultrafine particles in human nasal replicate cast. Journal of Aerosol Science, 1992, 23, 65-72.	3.8	96
740	The Penetration of Ultrafine Particles of 218Po Through Human Nasal and Oral Cast Models. Radiation Protection Dosimetry, 1992, 45, 665-667.	0.8	1
741	Measurement of Activity-Weighted Size Distributions of Radon Decay Products in a Normally Occupied Home. Radiation Protection Dosimetry, 1992, 45, 329-331.	0.8	4
742	Air Filtration and Radon Decay Product Mitigation. Indoor Air, 1992, 2, 84-100.	4.3	11
743	Exploration of multivariate chemical data by projection pursuit. Chemometrics and Intelligent Laboratory Systems, 1992, 16, 45-59.	3.5	20
744	A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. Journal of Chemometrics, 1992, 6, 65-83.	1.3	27
745	Factor and Correlation Analysis of Multivariate Environmental Data. , 1992, , 139-180.		1
746	Measurement of Activity-Weighted Size Distributions of Radon Decay Products in a Normally Occupied Home. Radiation Protection Dosimetry, 1992, 45, 329-331.	0.8	4
747	Distribution characteristics of trace elements and ionic species of aerosol collected at Canadian high arctic. Atmospheric Environment Part A General Topics, 1991, 25, 2903-2909.	1.3	11
748	An Automated, Semicontinuous System for Measuring Indoor Radon Progeny Activity-Weighted Size Distributions,dp: 0.5–500 nm. Aerosol Science and Technology, 1991, 14, 82-92.	3.1	33
749	Study of Neutralization of 218Po Ions by Small Ion Recombination in O2, Ar, and N2. Health Physics, 1991, 61, 209-214.	0.5	9
750	Efficacy of Air Cleaning Systems in Controlling Indoor Radon Decay Products. Health Physics, 1991, 61, 785-797.	0.5	22
751	Radon and radon progeny measurements. TrAC - Trends in Analytical Chemistry, 1991, 10, 243-249.	11.4	1
752	An introduction to receptor modeling. Chemometrics and Intelligent Laboratory Systems, 1991, 10, 21-43.	3.5	66
753	Comments on "Source apportionment with one source unknown―by K. Bandeen-Roche and D. Ruppert. Chemometrics and Intelligent Laboratory Systems, 1991, 10, 185-187.	3.5	0
754	Chemometrics tutorials. Analytica Chimica Acta, 1991, 245, 290.	5.4	4
755	Determination of heavy metals in the Rock River (Illinois) through the analysis of sediments. Journal of Radioanalytical and Nuclear Chemistry, 1991, 148, 319-337.	1.5	17
756	Characterization of Radon Decay Products in a Domestic Environment. Indoor Air, 1991, 1, 539-561.	4.3	5

#	Article	IF	CITATIONS
757	Chapter 6 Quantitative Determination of Highway emissions in the Air Using Receptor Models. Studies in Environmental Science, 1991, , 209-258.	0.0	0
758	Source Apportionment with Site Specific Source Profiles. Journal of the Air and Waste Management Association, 1991, 41, 294-305.	0.1	18
759	An Introduction to Receptor Modeling. Data Handling in Science and Technology, 1991, , 1-10.	3.1	6
760	Foreign Students and U.S. Economic Health. Science, 1991, 253, 1194-1194.	12.6	0
761	A Measurement System for Rn Decay Product Lung Deposition Based on Respiratory Models. Health Physics, 1990, 58, 291-295.	0.5	15
762	Chapter 2 The Application of Supercomputers to Chemometrics. Data Handling in Science and Technology, 1990, 6, 9-19.	3.1	0
763	Chapter 15 The Use of Fractal Dimension to Characterize Individual Airborne Particles. Data Handling in Science and Technology, 1990, , 173-178.	3.1	1
764	Chapter 16 Use of a Rule-Building Expert System for Classifying Particles Based on Sem Analysis. Data Handling in Science and Technology, 1990, 6, 179-198.	3.1	1
765	Methodological study applying three-mode factor analysis to three-way chemical data sets. Chemometrics and Intelligent Laboratory Systems, 1990, 7, 237-250.	3.5	23
766	The use of sampling to cluster large data sets. Chemometrics and Intelligent Laboratory Systems, 1990, 8, 195-204.	3.5	11
767	Simulation Studies of Reconstruction Algorithms for the Determination of Optimum Operating Parameters and Resolution of Graded Screen Array Systems (Nonconventional Diffusion Batteries). Aerosol Science and Technology, 1990, 12, 700-710.	3.1	11
768	Size Distribution Measurements of Ultrafine Aerosols,dp> 1.8 nm, Formed by Radiolysis in a Diameter Measurement Analyzer Aerosol Charger. Aerosol Science and Technology, 1990, 13, 394-398.	3.1	19
769	Assessment of wire and tube penetration theories using a cluster aerosol. Journal of Aerosol Science, 1990, 21, 203-211.	3.8	29
770	Comparison of particles taken from the ESP and plume of a coal-fired power plant with background aerosol particles. Atmospheric Environment, 1989, 23, 81-84.	1.0	11
771	Identification of markers for chemical mass balance receptor model. Atmospheric Environment, 1989, 23, 1373-1384.	1.0	18
772	The use of constrained least-squares to solve the chemical mass balance problem. Atmospheric Environment, 1989, 23, 2143-2150.	1.0	20
773	A study of the sources of acid precipitation in Ontario, Canada. Atmospheric Environment, 1989, 23, 1499-1509.	1.0	229
774	The use of Whatman 41 filters for high volume aerosol sampling. Atmospheric Environment, 1989, 23, 2861-2862.	1.0	0

#	Article	IF	CITATIONS
775	Target transformation factor analysis. Chemometrics and Intelligent Laboratory Systems, 1989, 6, 7-19.	3.5	43
776	The initial behavior of 218Po in indoor air. Environment International, 1989, 15, 299-308.	10.0	20
777	Neutralization kinetics for polonium-218 [Erratum to document cited in CA108(24):210537e]. Environmental Science & Technology, 1989, 23, 368-368.	10.0	0
778	Theoretical Evaluation of Indoor Radon Control Using a Carbon Adsorption System. Japca, 1989, 39, 305-309.	0.3	3
779	Use of Electrostatic Collection of 218Po for Measuring Rn. Health Physics, 1989, 57, 39-42.	0.5	44
780	On Improving the Validity of Wire Screen "Unattached―Fraction Rn Daughter Measurements. Health Physics, 1989, 56, 189-194.	0.5	83
781	Two Medieval Enameled Objects Studied by X-ray Fluorescence. Advances in Chemistry Series, 1989, , 233-247.	0.6	1
782	Analysis of the genotoxicity of municipal sewage sludge extracts with sister chromatid exchange in cultured human lymphocytes. Water, Air, and Soil Pollution, 1988, 42, 117.	2.4	4
783	The effects of measurement errors, collinearity and their interactions on aerosol source apportionment computations. Chemometrics and Intelligent Laboratory Systems, 1988, 4, 239-250.	3.5	5
784	Target transformation factor analysis as an aerosol mass apportionment method: A review and sensitivity study. Atmospheric Environment, 1988, 22, 1777-1792.	1.0	62
785	Source Apportionment of the El Paso Aerosol by Particle Class Balance Analysis. Aerosol Science and Technology, 1988, 9, 221-235.	3.1	29
786	Production of ultrafine particles by radon radiolysis. Journal of Aerosol Science, 1988, 19, 1323-1325.	3.8	10
787	Radon adsorption on activated carbon and the effect of some airborne contaminants. Science of the Total Environment, 1988, 76, 193-202.	8.0	10
788	Neutralization kinetics for polonium-218. Environmental Science & amp; Technology, 1988, 22, 711-717.	10.0	91
789	Classification of Individual Particles Based on Computer-Controlled Scanning Electron Microscopy Data. Aerosol Science and Technology, 1988, 9, 133-151.	3.1	39
790	A Simple Methodology for the Determination of Back Trajectories. Japca, 1988, 38, 812-813.	0.3	2
791	Target-Transformation Factor Analysis of Airborne Particulate Samples Selected by Wind-Trajectory Analysis. Aerosol Science and Technology, 1988, 8, 63-80.	3.1	29
792	Evaluation of the expert system shells EX-TRAN and TIMM as rule-building tools for classification purposes. Chemometrics and Intelligent Laboratory Systems, 1988, 3, 199-204.	3.5	14

PHILIP K. HOPKE

#	Article	IF	CITATIONS
793	Investigation of the Geographical Distribution of Female Cancer Patterns in Belgium Using Pattern Recognition Techniques. International Journal of Epidemiology, 1988, 17, 724-731.	1.9	4
794	The Initial Behaviour of 218Po in Indoor Air. Radiation Protection Dosimetry, 1988, 24, 207-210.	0.8	9
795	The Initial Behaviour of 218Po in Indoor Air. Radiation Protection Dosimetry, 1988, 24, 207-210.	0.8	1
796	The Indoor Radon Problem Explained for the Layman. ACS Symposium Series, 1987, , 572-586.	0.5	3
797	The Feasibility of Using Activated Charcoal To Control Indoor Radon. ACS Symposium Series, 1987, , 560-569.	0.5	2
798	Development of a Mobility Analyzer for Studying the Particle-Producing Phenomena Related to Radon Progeny. ACS Symposium Series, 1987, , 357-364.	0.5	0
799	Reduction of mutagenicity of municipal wastewaters by land treatment. Science of the Total Environment, 1987, 66, 193-202.	8.0	8
800	Calibration of a cyclone separator for atmospheric sampling. Science of the Total Environment, 1987, 65, 261-266.	8.0	1
801	Multivariate analysis of CCSEM auto emission data. Science of the Total Environment, 1987, 59, 141-155.	8.0	30
802	Solubility of radon in selected perfluorocarbon compounds and water. Industrial & Engineering Chemistry Research, 1987, 26, 356-359.	3.7	22
803	Comparison of rule-building expert systems with pattern recognition for the classification of analytical data. Analytical Chemistry, 1987, 59, 1868-1871.	6.5	77
804	Radon and Its Decay Products: An Overview. ACS Symposium Series, 1987, , 1-8.	0.5	3
805	Induction of an Ultrafine Aerosol by Radon Radiolysis. ACS Symposium Series, 1987, , 365-376.	O.5	9
806	An introduction to supercomputers. TrAC - Trends in Analytical Chemistry, 1987, 6, 1-2.	11.4	3
807	New airborne particulate matter standard for the U.S.A TrAC - Trends in Analytical Chemistry, 1987, 6, X.	11.4	0
808	The interpretation of multielemental INAA data using pattern recognition methods. Journal of Radioanalytical and Nuclear Chemistry, 1987, 112, 215-222.	1.5	4
809	Internationally compatible environmental data. TrAC - Trends in Analytical Chemistry, 1986, 5, X-XI.	11.4	0
810	Super micro computing with the DSI-32 board. TrAC - Trends in Analytical Chemistry, 1986, 5, 204-205.	11.4	3

#	Article	IF	CITATIONS
811	Another coprocessor board to add power to your PC. TrAC - Trends in Analytical Chemistry, 1986, 5, 252-253.	11.4	1
812	Recent improvements to fantasia, a target transformation factor analysis program. Computers & Chemistry, 1986, 10, 163-164.	1.2	4
813	Investigation on the use of chemical mass balance receptor model: Numerical computations. Chemometrics and Intelligent Laboratory Systems, 1986, 1, 33-44.	3.5	19
814	Comments on prior use of the Malinowski indicator function in TTFA receptor modeling. Atmospheric Environment, 1986, 20, 605-606.	1.0	2
815	The use of chemometrics in apportionment of air pollution sources. TrAC - Trends in Analytical Chemistry, 1985, 4, 104-106.	11.4	5
816	Indoor air pollution: radioactivity. TrAC - Trends in Analytical Chemistry, 1985, 4, V-VI.	11.4	2
817	Environmental neutralization of polonium-218. Environmental Science & Technology, 1985, 19, 146-150.	10.0	69
818	Chemometrics and distributed software. Journal of Chemical Information and Computer Sciences, 1985, 25, 308-313.	2.8	7
819	Turbulent deposition of submicron particles on rough walls. Journal of Aerosol Science, 1985, 16, 81-86.	3.8	29
820	Comparison of the target transformation factor analysis of coal composition data with x-ray diffraction analysis. Analytica Chimica Acta, 1984, 160, 121-134.	5.4	13
821	Organics in complex mixtures—sewage sludge. TrAC - Trends in Analytical Chemistry, 1984, 3, VII.	11.4	0
822	Observer: Receptor models in air pollution. TrAC - Trends in Analytical Chemistry, 1984, 3, vi-vii.	11.4	1
823	A comparison of R- and Q-modes in target transformation factor analysis for resolving environmental data. Atmospheric Environment, 1984, 18, 345-352.	1.0	19
824	Review of receptor model fundamentals. Atmospheric Environment, 1984, 18, 1507-1515.	1.0	374
825	Interlaboratory comparison of source apportionment procedures: Results for simulated data sets. Atmospheric Environment, 1984, 18, 1517-1537.	1.0	68
826	Chemical and physical analyses of Houston aerosol for interlaboratory comparison of source apportionment procedures. Atmospheric Environment, 1984, 18, 1539-1553.	1.0	24
827	Interlaboratory comparison of Receptor Model results for Houston aerosol. Atmospheric Environment, 1984, 18, 1555-1566.	1.0	40
828	Implications of incomplete sampling on a statistical form of the ambient air quality standard for particulate matter. Environmental Science & Technology, 1984, 18, 571-580.	10.0	10

#	Article	IF	CITATIONS
829	Comparison of the mutagenicity of sewage sludges. Environmental Science & Technology, 1984, 18, 909-916.	10.0	20
830	The effects of thermophoresis and diffusiophoresis on the collection of charged sub-μm particles by charged droplets. Atmospheric Environment, 1983, 17, 2533-2537.	1.0	6
831	Fantasia—A program for target transformation factor analysis to apportion sources in environmental samples. Computers & Chemistry, 1983, 7, 149-155.	1.2	35
832	Collection of hydrophilic and hydrophobic charged submicron particles by charged water droplets. Journal of Aerosol Science, 1983, 14, 703-712.	3.8	7
833	Evaporative mass losses from particle samples. Journal of Aerosol Science, 1983, 14, 611-613.	3.8	8
834	Radiolytic condensation nuclei in aerosol neutralizers. Journal of Aerosol Science, 1983, 14, 23-27.	3.8	15
835	Summary of an APCA Specialty Meeting. Journal of the Air Pollution Control Association, 1983, 33, 302-303.	0.5	4
836	THE USE OF FACTOR ANALYSIS IN SOURCE DETERMINATION OF PARTICULATE EMISSIONS. Particulate Science and Technology, 1983, 1, 183-192.	2.1	16
837	Analysis of fly ash produced from combustion of refuse-derived fuel and coal mixtures. Environmental Science & Technology, 1982, 16, 148-154.	10.0	23
838	Limits in charged-particle collection by charged drops. Environmental Science & Technology, 1982, 16, 384-387.	10.0	2
839	Multitechnique screening of Chicago municipal sewage sludge for mutagenic activity. Environmental Science & Technology, 1982, 16, 140-147.	10.0	51
840	The Use of Principal Component Factor Analysis to Interpret Particulate Compositional Data Sets. Journal of the Air Pollution Control Association, 1982, 32, 637-642.	0.5	51
841	An improved constant output atomizer. AIHA Journal, 1982, 43, 135-136.	0.4	19
842	Factors Affecting the Collision of Aerosol Particles with Small Water Drops. Aerosol Science and Technology, 1982, 2, 341-349.	3.1	7
843	The application of factor analysis to source apportionment of aerosol mass. AIHA Journal, 1982, 43, 314-318.	0.4	30
844	Identification of noise in linear data sets by factor analysis. Journal of Radioanalytical Chemistry, 1982, 70, 483-495.	0.5	0
845	Procedures for multielement analysis using high-flux fast-neutron activation. Journal of Radioanalytical Chemistry, 1982, 72, 183-194.	0.5	3
846	Fitting statistical distributions to air quality data by the maximum likelihood method. Atmospheric Environment, 1982, 16, 1574-1575.	1.0	0

#	Article	IF	CITATIONS
847	Trace element concentrations in summer aerosols at rural sites in New York state and their possible sources and seasonal variations in the composition of ambient sulfatecontaining aerosols in the New York area. Atmospheric Environment, 1982, 16, 1279-1280.	1.0	15
848	Calibration of an autoranging condensation nuclei counter. Atmospheric Environment, 1982, 16, 2999-3001.	1.0	1
849	Error estimates for factor loadings and scores obtained by target transformation factor analysis. Analytica Chimica Acta, 1982, 135, 379-380.	5.4	9
850	Analysis of Mineral Phases in Coal Utilizing Factor Analysis. , 1982, , 163-174.		2
851	The Application of Factor Analysis to Urban Aerosol Source Resolution. ACS Symposium Series, 1981, , 21-49.	0.5	15
852	Error estimates for factor loadings and scores obtained with target transformation factor analysis. Analytica Chimica Acta, 1981, 132, 89-97.	5.4	42
853	Comparison of weighted and unweighted target transformation rotations in factor analysis. Computers & Chemistry, 1981, 5, 1-7.	1.2	40
854	Trace multielement analysis using high-flux fast-neutron activation. Journal of Radioanalytical Chemistry, 1981, 63, 187-199.	0.5	8
855	A determination of the sources of airborne particles collected during the regional air pollution study. Atmospheric Environment, 1981, 15, 675-687.	1.0	83
856	Effects of Trace Gases and Water Vapor on the Diffusion Coefficient of Polonium-218. Science, 1981, 211, 480-481.	12.6	37
857	Estimation of the weight-dependent probability of detecting a mutagen with the ames assay. Environmental Mutagenesis, 1980, 2, 419-424.	1.4	9
858	A quantitative determination of sources in the Boston urban aerosol. Atmospheric Environment, 1980, 14, 1137-1146.	1.0	106
859	Determination of the sources of toxic elements in environmental particles using microscopic and statistical analysis techniques. Environment International, 1980, 4, 453-461.	10.0	10
860	SOURCE IDENTIFICATION AND RESOLUTION THROUGH APPLICATION OF FACTOR AND CLUSTER ANALYSIS. Annals of the New York Academy of Sciences, 1980, 338, 103-115.	3.8	15
861	Multielemental characterization of urban roadway dust. Environmental Science & Technology, 1980, 14, 164-172.	10.0	285
862	The Reduction of Airborne Radon Daughter Concentration by Plateout on an Air Mixing Fan. Health Physics, 1979, 36, 497-504.	0.5	7
863	The Paredon, Mexico, Obsidian Source and Early Formative Exchange. Science, 1978, 201, 807-809.	12.6	28
864	Multiparticle configurations in the odd-neutron nucleiNi61andZn67populated by decay ofCu61,Cu67, andGa67. Physical Review C, 1978, 17, 1822-1831.	2.9	18

#	Article	IF	CITATIONS
865	A versatile and comprehensive analysis code for automated reduction of gamma-ray spectral data. Computers & Chemistry, 1977, 1, 257-264.	1.2	14
866	The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol. Atmospheric Environment, 1976, 10, 1015-1025.	1.0	235
867	Hindered beta decay ofNbm95and the decay sequenceZr95→Nbm,g95→Mo95. Physical Review C, 1976, 13, 434-436.	2.9	2
868	The application of multivariate analysis for interpretation of the chemical and physical analysis of lake sediments. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1976, 11, 367-383.	0.1	8
869	Gamma-ray tables for neutron fast neutron and photon activation analysis. Journal of Radioanalytical Chemistry, 1975, 24, 125-251.	0.5	12
870	The use of instrumental neutron activation analysis for the determination of arsenic concentrations in poultry. Journal of Radioanalytical Chemistry, 1975, 25, 299-302.	0.5	3
871	Gamma-ray tables for neutron, fast-neutron and photon activation analysis. Journal of Radioanalytical Chemistry, 1975, 25, 303-428.	0.5	8
872	Radioactivity from a Nuclear Fuel Reprocessing Plant Found in Natural Waters. International Journal of Environmental Analytical Chemistry, 1975, 4, 65-74.	3.3	0
873	The Dynamics of Diquat in a Model Eco-System. Environmental Letters, 1975, 8, 325-335.	0.3	3
874	Spectrophotometric Determination of Nitrate Ion in Fresh Water. International Journal of Environmental Analytical Chemistry, 1974, 3, 185-190.	3.3	2
875	Extranuclear effects on nuclear decay rates. Journal of Chemical Education, 1974, 51, 517.	2.3	2
876	Radioactive Decay oflm130,Ig130, andCs130to Levels ofXe130. Physical Review C, 1973, 8, 745-756.	2.9	18
877	Anaomalous Arsenic Concentrations in Chautauqua Lake. Environmental Letters, 1973, 5, 45-51.	0.3	19
878	The decay of 195mPb and 197mPb. Nuclear Physics A, 1972, 184, 497-506.	1.5	13
879	Identification and characterization of 3.8 min 134ml. Nuclear Physics A, 1972, 179, 689-700.	1.5	15
880	Half-Life Variations of1131Samples. Physical Review C, 1971, 3, 1699-1701.	2.9	3
881	Pt193L-Electron-Capture Half-Life. Physical Review C, 1971, 4, 606-606.	2.9	7
882	Levels in 119, 121, 123Te. Nuclear Physics A, 1970, 146, 182-192.	1.5	25

#	Article	IF	CITATIONS
883	lsotope separator on-line at the Princeton-Pennsylvania accelerator. Nuclear Instruments & Methods, 1970, 84, 237-243.	1.2	5
884	Decay of 205At. Nuclear Physics A, 1970, 149, 63-64.	1.5	7
885	Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH. , 0, .		1