M Kyle Brennaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312975/publications.pdf

Version: 2024-02-01

126907 123424 5,464 61 33 61 citations g-index h-index papers 63 63 63 5284 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Semiconductorâ€Mediatorâ€Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2022, 28, e202102630.	3.3	4
2	Dye-Sensitized Nonstoichiometric Strontium Titanate Core–Shell Photocathodes for Photoelectrosynthesis Applications. ACS Applied Materials & Diterfaces, 2021, 13, 15261-15269.	8.0	5
3	Ruthenium Dyes, Charge Transfer, and the Sun. ECS Meeting Abstracts, 2021, MA2021-01, 1812-1812.	0.0	O
4	Organic Chromophores Designed for Hole Injection into Wide-Band-Gap Metal Oxides for Solar Fuel Applications. Chemistry of Materials, 2020, 32, 8158-8168.	6.7	12
5	Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. Journal of Chemical Physics, 2020, 153, 054307.	3.0	5
6	Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations. Journal of Physical Chemistry B, 2020, 124, 5971-5985.	2.6	13
7	A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. Journal of the American Chemical Society, 2019, 141, 10390-10398.	13.7	34
8	Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nature Energy, 2019, 4, 290-299.	39.5	149
9	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO ₂ Electrodes: Surface Reductive Electropolymerization and Silane Chemistry. ACS Central Science, 2019, 5, 506-514.	11.3	15
10	Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry. ACS Applied Materials & Silane and Click Chemistry. ACS Applied Materials & Silane and Click Chemistry.	8.0	18
11	Charge Transfer from Upconverting Nanocrystals to Semiconducting Electrodes: Optimizing Thermodynamic Outputs by Electronic Energy Transfer. Journal of the American Chemical Society, 2019, 141, 463-471.	13.7	19
12	A High-Valent Metal-Oxo Species Produced by Photoinduced One-Electron, Two-Proton Transfer Reactivity. Inorganic Chemistry, 2018, 57, 486-494.	4.0	28
13	Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore–Ru(II) Water Oxidation Catalyst Assembly on SnO ₂ Electrodes. Journal of Physical Chemistry C, 2018, 122, 13455-13461.	3.1	11
14	Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy and Environmental Science, 2018, 11, 447-455.	30.8	23
15	Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2018, 140, 6493-6500.	13.7	48
16	Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell. Green Chemistry and Sustainable Technology, 2018, , 229-257.	0.7	6
17	A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation. Journal of the American Chemical Society, 2018, 140, 15062-15069.	13.7	29
18	Completing a Charge Transport Chain for Artificial Photosynthesis. Journal of the American Chemical Society, 2018, 140, 9823-9826.	13.7	20

#	Article	IF	CITATIONS
19	Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge That Follows Different Pathways. Journal of the American Chemical Society, 2018, 140, 7176-7186.	13.7	27
20	Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 13017-13026.	3.1	10
21	Excited-State Decay Pathways of Tris(bidentate) Cyclometalated Ruthenium(II) Compounds. Inorganic Chemistry, 2017, 56, 13579-13592.	4.0	36
22	Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores. Journal of the American Chemical Society, 2017, 139, 16248-16255.	13.7	52
23	Chromophore-Catalyst Assembly for Water Oxidation Prepared by Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39018-39026.	8.0	32
24	Ultrafast Recombination Dynamics in Dye-Sensitized SnO ₂ /TiO ₂ Core/Shell Films. Journal of Physical Chemistry Letters, 2016, 7, 5297-5301.	4.6	41
25	Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes. Journal of Physical Chemistry A, 2016, 120, 1845-1852.	2.5	8
26	Efficient Photochemical Dihydrogen Generation Initiated by a Bimetallic Self-Quenching Mechanism. Journal of the American Chemical Society, 2016, 138, 13509-13512.	13.7	40
27	Direct observation of light-driven, concerted electron–proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11106-11109.	7.1	27
28	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	13.7	317
29	Polymerâ€Based Ruthenium(II) Polypyridyl Chromophores on TiO ₂ for Solar Energy Conversion. Chemistry - an Asian Journal, 2016, 11, 1257-1267.	3.3	25
30	Phosphonate-Derivatized Porphyrins for Photoelectrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3853-3860.	8.0	29
31	Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO ₂ . Journal of the American Chemical Society, 2016, 138, 4426-4438.	13.7	84
32	An aqueous, organic dye derivatized SnO ₂ /TiO ₂ core/shell photoanode. Journal of Materials Chemistry A, 2016, 4, 2969-2975.	10.3	89
33	Visible photoelectrochemical water splitting into H ₂ and O ₂ in a dye-sensitized photoelectrosynthesis cell. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5899-5902.	7.1	136
34	Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews, 2015, 115, 13006-13049.	47.7	412
35	Artificial photosynthesis: Where are we now? Where can we go?. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 32-45.	11.6	158
36	Ultrafast, Light-Induced Electron Transfer in a Perylene Diimide Chromophore-Donor Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2015, 6, 4736-4742.	4.6	20

#	Article	lF	Citations
37	Controlling Ground and Excited State Properties through Ligand Changes in Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2014, 53, 5637-5646.	4.0	53
38	Driving Force Dependent, Photoinduced Electron Transfer at Degenerately Doped, Optically Transparent Semiconductor Nanoparticle Interfaces. Journal of the American Chemical Society, 2014, 136, 15869-15872.	13.7	43
39	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Nanoparticle Metal-Oxide Electrodes in Water by Hydrophobic PMMA Overlayers. Journal of the American Chemical Society, 2014, 136, 13514-13517.	13.7	70
40	Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of the American Chemical Society, 2014, 136, 9773-9779.	13.7	80
41	Rapid energy transfer in non-porous metal–organic frameworks with caged Ru(bpy)32+ chromophores: oxygen trapping and luminescence quenching. Journal of Materials Chemistry A, 2013, 1, 14982.	10.3	62
42	Revealing the Relationship between Semiconductor Electronic Structure and Electron Transfer Dynamics at Metal Oxide–Chromophore Interfaces. Journal of Physical Chemistry C, 2013, 117, 25259-25268.	3.1	45
43	Solar water splitting in a molecular photoelectrochemical cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20008-20013.	7.1	203
44	A Sensitized Nb ₂ O ₅ Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell. Chemistry of Materials, 2013, 25, 122-131.	6.7	66
45	Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy and Environmental Science, 2013, 6, 1240.	30.8	25
46	Distance Dependence of Intrahelix Ru ^{II} * to Os ^{II} Polypyridyl Excited-State Energy Transfer in Oligoproline Assemblies. Journal of Physical Chemistry B, 2013, 117, 6352-6363.	2.6	10
47	Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11587-11594.	13.7	68
48	Photoinduced Electron Transfer in a Chromophore–Catalyst Assembly Anchored to TiO ₂ . Journal of the American Chemical Society, 2012, 134, 19189-19198.	13.7	116
49	Selfâ€Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layerâ€byâ€Layer Deposition on Nanostructured Metal Oxides. Angewandte Chemie - International Edition, 2012, 51, 12782-12785.	13.8	118
50	Hybrid 3D graphene and aligned carbon nanofiber array architectures. RSC Advances, 2012, 2, 8965.	3.6	20
51	Photostability of Phosphonate-Derivatized, Ru ^{II} Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Surfaces, 2012, 4, 1462-1469.	8.0	157
52	Structure–Property Relationships in Phosphonate-Derivatized, Ru ^{II} Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 14837-14847.	3.1	156
53	Interfacial Dynamics and Solar Fuel Formation in Dyeâ€Sensitized Photoelectrosynthesis Cells. ChemPhysChem, 2012, 13, 2882-2890.	2.1	41

Competing Pathways in the <i>photo-</i>Proton-Coupled Electron Transfer Reduction of

4

54

#	Article	IF	CITATIONS
55	Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2011, 2, 1808-1813.	4.6	93
56	Interfacial Electron Transfer Dynamics for [Ru(bpy) ₂) ₂ bpy)] ²⁺ Sensitized TiO ₂ in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics. Journal of Physical Chemistry C, 2011, 115, 7081-7091.	3.1	56
57	Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of [Ru(bpy) ₂ ((4,4′â€PO ₃ H ₂) ₂ bpy)] ²⁺ in TiO ₂ Nanoparticle Films in Aqueous Environments. ChemSusChem, 2011, 4, 216-227.	6.8	71
58	Making solar fuels by artificial photosynthesis. Pure and Applied Chemistry, 2011, 83, 749-768.	1.9	123
59	Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1954-1965.	15.6	788
60	Excited-State Quenching by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2007, 129, 6968-6969.	13.7	104
61	Chemical Approaches to Artificial Photosynthesis. 2. Inorganic Chemistry, 2005, 44, 6802-6827.	4.0	887