List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312686/publications.pdf Version: 2024-02-01

		53660	49773
316	10,214	45	87
papers	citations	h-index	g-index
342	342	342	9183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations. Machine Learning, 2023, 112, 1337-1363.	3.4	2
2	ReliefE: feature ranking in high-dimensional spaces via manifold embeddings. Machine Learning, 2022, 111, 273-317.	3.4	3
3	Survival analysis with semi-supervised predictive clustering trees. Computers in Biology and Medicine, 2022, 141, 105001.	3.9	11
4	Differential responses of coexisting owls to annual small mammal population fluctuations in temperate mixed forest. Ibis, 2022, 164, 535-551.	1.0	7
5	Explaining the performance of multilabel classification methods with data set properties. International Journal of Intelligent Systems, 2022, 37, 6080-6122.	3.3	4
6	Machine learning for effective spacecraft operation: Operating INTEGRAL through dynamic radiation environments. Advances in Space Research, 2022, 69, 3909-3920.	1.2	1
7	A multidisciplinary study of biodeteriorated Celje Ceiling, a tempera painting on canvas. International Biodeterioration and Biodegradation, 2022, 170, 105389.	1.9	11
8	Wet-dry-wet drug screen leads to the synthesis of TS1, a novel compound reversing lung fibrosis through inhibition of myofibroblast differentiation. Cell Death and Disease, 2022, 13, 2.	2.7	3
9	A catalogue with semantic annotations makes multilabel datasets FAIR. Scientific Reports, 2022, 12, 7267.	1.6	3
10	Comprehensive comparative study of multi-label classification methods. Expert Systems With Applications, 2022, 203, 117215.	4.4	38
11	Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft. Scientific Data, 2022, 9, .	2.4	3
12	Relational tree ensembles and feature rankings. Knowledge-Based Systems, 2022, 251, 109254.	4.0	2
13	Exploiting partially-labeled data in learning predictive clustering trees for multi-target regression: A case study of water quality assessment in Ireland. Ecological Informatics, 2021, 61, 101161.	2.3	5
14	Learning comprehensible and accurate hybrid trees. Expert Systems With Applications, 2021, 164, 113980.	4.4	4
15	Biomarker discovery by feature ranking: Evaluation on a case study of embryonal tumors. Computers in Biology and Medicine, 2021, 128, 104143.	3.9	6
16	Ensemble―and distanceâ€based feature ranking for unsupervised learning. International Journal of Intelligent Systems, 2021, 36, 3068-3086.	3.3	1
17	Probabilistic grammars for equation discovery. Knowledge-Based Systems, 2021, 224, 107077.	4.0	11
18	Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water (Switzerland), 2021, 13, 2268.	1.2	2

#	Article	IF	CITATIONS
19	Multi-Target Regression Rules With Random Output Selections. IEEE Access, 2021, 9, 10509-10522.	2.6	3
20	Unsupervised Feature Ranking via Attribute Networks. Lecture Notes in Computer Science, 2021, , 334-343.	1.0	0
21	Automated modelling of urban runoff based on domain knowledge and equation discovery. Journal of Hydrology, 2021, 603, 127077.	2.3	5
22	Relating Prenatal Hg Exposure and Neurological Development in Children with Machine Learning. , 2021, , .		0
23	Using Machine Learning to Identify Factors Contributing to Mould in the Celje Ceiling Painting. , 2021, , \cdot		Ο
24	GalaxAI: Machine learning toolbox for interpretable analysis of spacecraft telemetry data. , 2021, , .		3
25	Feature ranking for multi-target regression. Machine Learning, 2020, 109, 1179-1204.	3.4	44
26	Combinatorial search for selecting the structure of models of dynamical systems with equation discovery. Engineering Applications of Artificial Intelligence, 2020, 89, 103423.	4.3	4
27	Multi-label feature ranking with ensemble methods. Machine Learning, 2020, 109, 2141-2159.	3.4	6
28	Learning to Classify Structures in ALS-Derived Visualizations of Ancient Maya Settlements with CNN. Remote Sensing, 2020, 12, 2215.	1.8	35
29	Cheminformatics in MS-based environmental exposomics: Current achievements and future directions. Trends in Environmental Analytical Chemistry, 2020, 28, e00099.	5.3	14
30	Incremental predictive clustering trees for online semi-supervised multi-target regression. Machine Learning, 2020, 109, 2121-2139.	3.4	5
31	Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks. Scientific Reports, 2020, 10, 22295.	1.6	22
32	Equation Discovery for Nonlinear System Identification. IEEE Access, 2020, 8, 29930-29943.	2.6	11
33	Distinct Types of Gut Microbiota Dysbiosis in Hospitalized Gastroenterological Patients Are Disease Non-related and Characterized With the Predominance of Either Enterobacteriaceae or Enterococcus. Frontiers in Microbiology, 2020, 11, 120.	1.5	22
34	Semantic Description of Data Mining Datasets: An Ontology-Based Annotation Schema. Lecture Notes in Computer Science, 2020, , 140-155.	1.0	4
35	Semi-supervised regression trees with application to QSAR modelling. Expert Systems With Applications, 2020, 158, 113569.	4.4	13
36	Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods. Acta Polytechnica Hungarica, 2020, 17, 129-148.	2.5	4

#	Article	IF	CITATIONS
37	Predictive model for the quantitative analysis of human skin using photothermal radiometry and diffuse reflectance spectroscopy. Biomedical Optics Express, 2020, 11, 1679.	1.5	13
38	Option predictive clustering trees for multi-target regression. Computer Science and Information Systems, 2020, 17, 459-486.	0.7	2
39	Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite. Lecture Notes in Computer Science, 2020, , 217-230.	1.0	1
40	Semantic Annotation of Predictive Modelling Experiments. Lecture Notes in Computer Science, 2020, , 124-139.	1.0	1
41	Predicting Associations Between Proteins and Multiple Diseases. Lecture Notes in Computer Science, 2020, , 383-392.	1.0	Ο
42	Hierarchy Decomposition Pipeline: A Toolbox for Comparison of Model Induction Algorithms on Hierarchical Multi-label Classification Problems. Lecture Notes in Computer Science, 2020, , 486-501.	1.0	0
43	Option Predictive Clustering Trees for Multi-label Classification. Acta Polytechnica Hungarica, 2020, 17, 109-128.	2.5	2
44	Estimating the Importance of Relational Features by Using Gradient Boosting. Lecture Notes in Computer Science, 2020, , 362-371.	1.0	2
45	Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft. IEEE Aerospace and Electronic Systems Magazine, 2019, 34, 46-60.	2.3	13
46	SMURF: Systematic Methodology for Unveiling Relevant Factors in Retrospective Data on Chronic Disease Treatments. IEEE Access, 2019, 7, 92598-92614.	2.6	3
47	Quantifying the Effects of Gyroless Flying of the Mars Express Spacecraft with Machine Learning. , 2019, , .		6
48	Data-Driven Structuring of the Output Space Improves the Performance of Multi-Target Regressors. IEEE Access, 2019, 7, 145177-145198.	2.6	4
49	Using machine learning to estimate herbage production and nutrient uptake on Irish dairy farms. Journal of Dairy Science, 2019, 102, 10639-10656.	1.4	18
50	MetaBags: Bagged Meta-Decision Trees for Regression. Lecture Notes in Computer Science, 2019, , 637-652.	1.0	9
51	Towards reusable process-based models of dynamical systems: A case study in the domain of aquatic ecosystems. , 2019, , .		Ο
52	Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems. IEEE Access, 2019, 7, 181829-181841.	2.6	4
53	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	3.8	261
54	Analysis of 1.2 million foot scans from North America, Europe and Asia. Scientific Reports, 2019, 9, 19155.	1.6	30

#	Article	IF	CITATIONS
55	Predicting Thermal Power Consumption of the Mars Express Satellite with Data Stream Mining. Lecture Notes in Computer Science, 2019, , 186-201.	1.0	1
56	Utilizing Hierarchies in Tree-Based Online Structured Output Prediction. Lecture Notes in Computer Science, 2019, , 87-95.	1.0	2
57	A machine-learning model for quantitative characterization of human skin using photothermal radiometry and diffuse reflectance spectroscopy. , 2019, , .		3
58	Hybrid technique for characterization of human skin using a combined machine learning and inverse Monte Carlo approach. , 2019, , .		1
59	Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nature Communications, 2018, 9, 358.	5.8	47
60	Modeling the risk of water pollution by pesticides from imbalanced data. Environmental Science and Pollution Research, 2018, 25, 18781-18792.	2.7	14
61	Semi-supervised trees for multi-target regression. Information Sciences, 2018, 450, 109-127.	4.0	31
62	Tree-based methods for online multi-target regression. Journal of Intelligent Information Systems, 2018, 50, 315-339.	2.8	27
63	Redescription mining augmented with random forest of multi-target predictive clustering trees. Journal of Intelligent Information Systems, 2018, 50, 63-96.	2.8	13
64	Inferential Modelling of Population Dynamics. , 2018, , 161-188.		0
65	Extensive evaluation of the generalized relevance network approach to inferring gene regulatory networks. GigaScience, 2018, 7, .	3.3	7
66	Decoupling approximation robustly reconstructs directed dynamical networks. New Journal of Physics, 2018, 20, 113003.	1.2	6
67	Comparison of an optimal regression method for climate reconstruction with the compare_methods() function from the dendroTools R package. Dendrochronologia, 2018, 52, 96-104.	1.0	5
68	Feature Ranking with Relief for Multi-label Classification: Does Distance Matter?. Lecture Notes in Computer Science, 2018, , 51-65.	1.0	4
69	A Machine Learning Approach to Analyzing the Relationship Between Temperatures and Multi-Proxy Tree-Ring Records. Tree-Ring Research, 2018, 74, 210-224.	0.4	14
70	The evolutionary signal in metagenome phyletic profiles predicts many gene functions. Microbiome, 2018, 6, 129.	4.9	3
71	Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Clioblastoma Marker Candidates. International Journal of Molecular Sciences, 2018, 19, 1369.	1.8	11
72	Ensembles for multi-target regression with random output selections. Machine Learning, 2018, 107, 1673-1709.	3.4	23

#	Article	IF	CITATIONS
73	Predicting the vessel lumen area tree-ring parameter of <i>Quercus robur</i> with linear and nonlinear machine learning algorithms. Geochronometria, 2018, 45, 211-222.	0.2	6
74	HMC-ReliefF: Feature ranking for hierarchical multi-label classification. Computer Science and Information Systems, 2018, 15, 187-209.	0.7	12
75	Structuring the Output Space in Multi-label Classification by Using Feature Ranking. Lecture Notes in Computer Science, 2018, , 151-166.	1.0	1
76	Extending Redescription Mining to Multiple Views. Lecture Notes in Computer Science, 2018, , 292-307.	1.0	0
77	Phenotype Prediction with Semi-supervised Classification Trees. Lecture Notes in Computer Science, 2018, , 138-150.	1.0	1
78	Self-training for multi-target regression with tree ensembles. Knowledge-Based Systems, 2017, 123, 41-60.	4.0	41
79	Modelling Time-Series of Glucose Measurements from Diabetes Patients Using Predictive Clustering Trees. Lecture Notes in Computer Science, 2017, , 95-104.	1.0	0
80	Semi-supervised classification trees. Journal of Intelligent Information Systems, 2017, 49, 461-486.	2.8	36
81	A framework for redescription set construction. Expert Systems With Applications, 2017, 68, 196-215.	4.4	17
82	Multi-label classification via multi-target regression on data streams. Machine Learning, 2017, 106, 745-770.	3.4	53
83	Predictive Clustering of Multi-dimensional Time Series Applied to Forest Growing Stock Data forÂDifferent Tree Sizes. Communications in Computer and Information Science, 2017, , 186-195.	0.4	0
84	Feature Ranking for Multi-target Regression with Tree Ensemble Methods. Lecture Notes in Computer Science, 2017, , 171-185.	1.0	9
85	Predictive Clustering Trees for Hierarchical Multi-Target Regression. Lecture Notes in Computer Science, 2017, , 223-234.	1.0	3
86	General Meta-Model Framework for Surrogate-Based Numerical Optimization. Lecture Notes in Computer Science, 2017, , 51-66.	1.0	2
87	Multi-label Classification Using Random Label Subset Selections. Lecture Notes in Computer Science, 2017, , 108-115.	1.0	3
88	Option Predictive Clustering Trees for Hierarchical Multi-label Classification. Lecture Notes in Computer Science, 2017, , 116-123.	1.0	0
89	Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Scientific Reports, 2017, 7, 16448.	1.6	9
90	Process-Based Modeling and Design of Dynamical Systems. Lecture Notes in Computer Science, 2017, , 378-382.	1.0	5

#	Article	IF	CITATIONS
91	Using redescription mining to relate clinical and biological characteristics of cognitively impaired and Alzheimer's disease patients. PLoS ONE, 2017, 12, e0187364.	1.1	14
92	Uporaba metod strojnega uÄenja za preuÄevanje odnosov med znaÄilnostmi branik in okoljem. Acta Silvae Et Ligni, 2017, 114, 21-24.	0.3	1
93	Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions. PLoS ONE, 2016, 11, e0169116.	1.1	36
94	Comparison of Tree-Based Methods for Multi-target Regression on Data Streams. Lecture Notes in Computer Science, 2016, , 17-31.	1.0	4
95	The use of data-derived label hierarchies in multi-label classification. Journal of Intelligent Information Systems, 2016, 47, 57-90.	2.8	11
96	Ontology Engineering: From an Art to a Craft. Lecture Notes in Computer Science, 2016, , 174-181.	1.0	0
97	Special issue on discovery science. Machine Learning, 2016, 105, 1-2.	3.4	7
98	A comparison of fuzzy identification methods on benchmark datasets. IFAC-PapersOnLine, 2016, 49, 31-36.	0.5	7
99	Redescription Mining with Multi-target Predictive Clustering Trees. Lecture Notes in Computer Science, 2016, , 125-143.	1.0	8
100	Process-based design of dynamical biological systems. Scientific Reports, 2016, 6, 34107.	1.6	8
101	TMPRSS2:ERG gene aberrations may provide insight into pT stage in prostate cancer. BMC Urology, 2016, 16, 35.	0.6	6
102	Learning stochastic process-based models of dynamical systems from knowledge and data. BMC Systems Biology, 2016, 10, 30.	3.0	19
103	Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecology, 2016, 20, 30-39.	0.7	74
104	Generic ontology of datatypes. Information Sciences, 2016, 329, 900-920.	4.0	40
105	Ensembles of Fuzzy Linear Model Trees for the Identification of Multioutput Systems. IEEE Transactions on Fuzzy Systems, 2016, 24, 916-929.	6.5	8
106	Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity, 2016, 76, 97-118.	4.7	38
107	Improving bag-of-visual-words image retrieval with predictive clustering trees. Information Sciences, 2016, 329, 851-865.	4.0	39
108	Learning Ensembles of Process-Based Models by Bagging of Random Library Samples. Lecture Notes in Computer Science, 2016, , 245-260.	1.0	1

#	Article	IF	CITATIONS
109	Option Predictive Clustering Trees for Multi-target Regression. Lecture Notes in Computer Science, 2016, , 118-133.	1.0	2
110	Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models. PLoS ONE, 2016, 11, e0153507.	1.1	20
111	Modeling dynamical systems with data stream mining. Computer Science and Information Systems, 2016, 13, 453-473.	0.7	1
112	A Comparison of Different Data Transformation Approaches in the Feature Ranking Context. Lecture Notes in Computer Science, 2016, , 310-324.	1.0	0
113	Estimating Drainage Periods for Agricultural Fields from Measured Data: Dataâ€Mining Methodology and a Case Study (La JailliÃ^Re, France). Irrigation and Drainage, 2015, 64, 703-716.	0.8	6
114	Semi-Supervised Multi-View Learning for Gene Network Reconstruction. PLoS ONE, 2015, 10, e0144031.	1.1	32
115	The discriminatory value of cardiorespiratory interactions in distinguishing awake from anaesthetised states: a randomised observational study. Anaesthesia, 2015, 70, 1356-1368.	1.8	71
116	Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washingÂmachines. Fungal Biology, 2015, 119, 95-113.	1.1	68
117	Predicting long-term population dynamics with bagging and boosting of process-based models. Expert Systems With Applications, 2015, 42, 8484-8496.	4.4	24
118	Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology, 2015, 9, 31.	3.0	6
119	Semi-supervised Learning for Multi-target Regression. Lecture Notes in Computer Science, 2015, , 3-18.	1.0	8
120	Evaluation of Different Data-Derived Label Hierarchies in Multi-label Classification. Lecture Notes in Computer Science, 2015, , 19-37.	1.0	5
121	Community structure models are improved by exploiting taxonomic rank with predictive clustering trees. Ecological Modelling, 2015, 306, 294-304.	1.2	8
122	Improved medical image modality classification using a combination of visual and textual features. Computerized Medical Imaging and Graphics, 2015, 39, 14-26.	3.5	54
123	The importance of the label hierarchy in hierarchical multi-label classification. Journal of Intelligent Information Systems, 2015, 45, 247-271.	2.8	25
124	Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecological Modelling, 2015, 306, 305-317.	1.2	6
125	Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing, 2015, 150, 458-470.	3.5	55
126	Modeling water outflow from tile-drained agricultural fields. Science of the Total Environment, 2015, 505, 390-401.	3.9	21

#	Article	IF	CITATIONS
127	Model-Tree Ensembles for noise-tolerant system identification. Advanced Engineering Informatics, 2015, 29, 1-15.	4.0	3
128	Multi-label Classification via Multi-target Regression on Data Streams. Lecture Notes in Computer Science, 2015, , 170-185.	1.0	5
129	Chaophilic or chaotolerant fungi: a new category of extremophiles?. Frontiers in Microbiology, 2014, 5, 708.	1.5	52
130	The Use of the Label Hierarchy in Hierarchical Multi-label Classification Improves Performance. Lecture Notes in Computer Science, 2014, , 162-177.	1.0	2
131	Ontology of core data mining entities. Data Mining and Knowledge Discovery, 2014, 28, 1222-1265.	2.4	43
132	Model Tree Ensembles for the Identification of Multiple-Output Systems. , 2014, , .		3
133	ReliefF for Hierarchical Multi-label Classification. Lecture Notes in Computer Science, 2014, , 148-161.	1.0	8
134	Fast and efficient visual codebook construction for multi-label annotation using predictive clustering trees. Pattern Recognition Letters, 2014, 38, 38-45.	2.6	7
135	Development of a knowledge library for automated watershed modeling. Environmental Modelling and Software, 2014, 54, 60-72.	1.9	10
136	Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction. BMC Bioinformatics, 2013, 14, 285.	1.2	41
137	Tree ensembles for predicting structured outputs. Pattern Recognition, 2013, 46, 817-833.	5.1	210
138	Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy Relationships. PLoS Computational Biology, 2013, 9, e1002852.	1.5	29
139	A large-scale evaluation of computational protein function prediction. Nature Methods, 2013, 10, 221-227.	9.0	789
140	Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 2013, 13, 22-39.	2.3	34
141	Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Veterinary Microbiology, 2013, 165, 416-424.	0.8	24
142	Habitat modeling with single- and multi-target trees and ensembles. Ecological Informatics, 2013, 18, 79-92.	2.3	8
143	HYBRID DECISION TREE ARCHITECTURE UTILIZING LOCAL SVMs FOR EFFICIENT MULTI-LABEL LEARNING. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27, 1351004.	0.7	3
144	Length dispersion of shoes labelled with the same size in the UK shoe-size system. Footwear Science, 2013, 5, S39-S41.	0.8	7

#	Article	IF	CITATIONS
145	Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Scientific Reports, 2013, 3, 1351.	1.6	34
146	Learning Hierarchical Multi-label Classification Trees from Network Data. Lecture Notes in Computer Science, 2013, , 233-248.	1.0	2
147	OntoDM-KDD: Ontology for Representing the Knowledge Discovery Process. Lecture Notes in Computer Science, 2013, , 126-140.	1.0	22
148	Gut Microbiota Patterns Associated with Colonization of Different Clostridium difficile Ribotypes. PLoS ONE, 2013, 8, e58005.	1.1	63
149	Inductive Process Modeling of Rab5-Rab7 Conversion in Endocytosis. Lecture Notes in Computer Science, 2013, , 265-280.	1.0	0
150	Fast and Scalable Image Retrieval Using Predictive Clustering Trees. Lecture Notes in Computer Science, 2013, , 33-48.	1.0	5
151	A framework for a European network for a systematic environmental impact assessment of genetically modified organisms (GMO). BioRisk, 2012, 7, 73-97.	0.2	9
152	Hierarchical classification of diatom images using ensembles of predictive clustering trees. Ecological Informatics, 2012, 7, 19-29.	2.3	60
153	Using relational decision trees to model out-crossing rates in a multi-field setting. Ecological Modelling, 2012, 245, 75-83.	1.2	7
154	The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems. Ecological Modelling, 2012, 245, 136-165.	1.2	22
155	Network regression with predictive clustering trees. Data Mining and Knowledge Discovery, 2012, 25, 378-413.	2.4	43
156	Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization. Ecological Modelling, 2012, 226, 36-61.	1.2	27
157	Two stage architecture for multi-label learning. Pattern Recognition, 2012, 45, 1019-1034.	5.1	29
158	An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 2012, 45, 3084-3104.	5.1	579
159	Estimating the risk of fire outbreaks in the natural environment. Data Mining and Knowledge Discovery, 2012, 24, 411-442.	2.4	34
160	Machine Learning, Ensemble Methods in. , 2012, , 1781-1789.		3
161	Dealing with Spatial Autocorrelation in Gene Flow Modeling. Developments in Environmental Modelling, 2012, , 35-49.	0.3	Ο
162	Adaptive Windowing for Online Learning from Multiple Inter-related Data Streams. , 2011, , .		3

#	Article	IF	CITATIONS
163	Using Data Mining to Predict Soil Quality after Application of Biosolids in Agriculture. Journal of Environmental Quality, 2011, 40, 1972-1982.	1.0	9
164	Traitâ€based risk assessment for invasive species: high performance across diverse taxonomic groups, geographic ranges and machine learning/statistical tools. Diversity and Distributions, 2011, 17, 451-461.	1.9	37
165	Using classification trees to analyze the impact of exotic species on the ecological assessment of polder lakes in Flanders, Belgium. Ecological Modelling, 2011, 222, 2202-2212.	1.2	30
166	Analysis of time series data on agroecosystem vegetation using predictive clustering trees. Ecological Modelling, 2011, 222, 2524-2529.	1.2	14
167	Learning model trees from evolving data streams. Data Mining and Knowledge Discovery, 2011, 23, 128-168.	2.4	218
168	Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology, 2011, 5, 159.	3.0	37
169	Automated discovery of a model for dinoflagellate dynamics. Environmental Modelling and Software, 2011, 26, 658-668.	1.9	7
170	Hierarchical annotation of medical images. Pattern Recognition, 2011, 44, 2436-2449.	5.1	114
171	Incremental multi-target model trees for data streams. , 2011, , .		21
172	Predicting Structured Outputs k-Nearest Neighbours Method. Lecture Notes in Computer Science, 2011, , 262-276.	1.0	6
173	Dual Layer Voting Method for Efficient Multi-label Classification. Lecture Notes in Computer Science, 2011, , 232-239.	1.0	4
174	Network Regression with Predictive Clustering Trees. Lecture Notes in Computer Science, 2011, , 333-348.	1.0	9
175	Global and Local Spatial Autocorrelation in Predictive Clustering Trees. Lecture Notes in Computer Science, 2011, , 307-322.	1.0	13
176	Inductive Databases and Constraint-Based Data Mining. Lecture Notes in Computer Science, 2011, , 1-17.	1.0	0
177	Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics, 2010, 11, 2.	1.2	143
178	Learning habitat models for the diatom community in Lake Prespa. Ecological Modelling, 2010, 221, 330-337.	1.2	35
179	ADP-Ribosylation Factor Guanine Nucleotide-Exchange Factor 2 (ARFGEF2): A New Potential Biomarker in Huntington's Disease. Journal of International Medical Research, 2010, 38, 1653-1662.	0.4	8
180	Detection of Visual Concepts and Annotation of Images Using Ensembles of Trees for Hierarchical Multi-Label Classification. Lecture Notes in Computer Science, 2010, , 152-161.	1.0	6

#	Article	IF	CITATIONS
181	Finding explained groups of time-course gene expression profiles with predictive clustering trees. Molecular BioSystems, 2010, 6, 729.	2.9	30
182	Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics, 2010, 5, 256-266.	2.3	134
183	Modeling the Dynamics of Biological Networks from Time Course Data. Systems Biology, 2010, , 275-294.	0.1	1
184	Predicting Gene Function using Predictive Clustering Trees. , 2010, , 365-387.		6
185	Analyzing Gene Expression Data with Predictive Clustering Trees. , 2010, , 389-406.		2
186	Representing Entities in the OntoDM Data Mining Ontology. , 2010, , 27-58.		11
187	ImageCLEF 2009 Medical Image Annotation Task: PCTs for Hierarchical Multi-Label Classification. Lecture Notes in Computer Science, 2010, , 231-238.	1.0	3
188	Inductive Databases and Constraint-based Data Mining: Introduction and Overview. , 2010, , 3-26.		0
189	Constrained Predictive Clustering. , 2010, , 155-175.		1
190	Sustainable introduction of GM crops into european agriculture: a summary report of the FP6 SIGMEA research project. Oleagineux Corps Gras Lipides, 2009, 16, 37-51.	0.2	26
191	Modelling the outcrossing between genetically modified and conventional maize with equation discovery. Ecological Modelling, 2009, 220, 1063-1072.	1.2	11
192	Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecological Modelling, 2009, 220, 1159-1168.	1.2	156
193	Relational Data Mining. , 2009, , 887-911.		18
194	Towards an Ontology of Data Mining Investigations. Lecture Notes in Computer Science, 2009, , 257-271.	1.0	12
195	Rule Ensembles for Multi-target Regression. , 2009, , .		15
196	Predicting chemical parameters of the water from diatom abudance in lake Prespa and its tributaries. Environmental Science and Engineering, 2009, , 264-277.	0.1	2
197	Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data. Current Opinion in Biotechnology, 2008, 19, 360-368.	3.3	33
198	Inductive process modeling. Machine Learning, 2008, 71, 1-32.	3.4	66

#	Article	IF	CITATIONS
199	Decision trees for hierarchical multi-label classification. Machine Learning, 2008, 73, 185-214.	3.4	497
200	Characterizing the presence of oilseed rape feral populations on field margins using machine learning. Ecological Modelling, 2008, 212, 147-154.	1.2	36
201	Relations between the oilseed rape volunteer seedbank, and soil factors, weed functional groups and geographical location in the UK. Ecological Modelling, 2008, 212, 138-146.	1.2	22
202	Application of automated model discovery from data and expert knowledge to a real-world domain: Lake GlumsÃ, Ecological Modelling, 2008, 212, 92-98.	1.2	19
203	A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecological Modelling, 2008, 215, 247-261.	1.2	74
204	The feasibility of co-existence between conventional and genetically modified crops: Using machine learning to analyse the output of simulation models. Ecological Modelling, 2008, 215, 262-271.	1.2	3
205	OntoDM: An Ontology of Data Mining. , 2008, , .		72
206	A Minimal Description Length Scheme for Polynomial Regression. , 2008, , 284-295.		2
207	Learning Classification Rules for Multiple Target Attributes. , 2008, , 454-465.		10
208	Combining Bagging and Random Subspaces to Create Better Ensembles. Lecture Notes in Computer Science, 2007, , 118-129.	1.0	54
209	Hierarchical classification of environmental factors and agricultural practices affecting soil fauna under cropping systems using Bt maize. Pedobiologia, 2007, 51, 229-238.	0.5	28
210	Clustering Trees with Instance Level Constraints. Lecture Notes in Computer Science, 2007, , 359-370.	1.0	13
211	Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 2007, 108, 9-23.	4.6	171
212	Computational Discovery of Scientific Knowledge. Lecture Notes in Computer Science, 2007, , 1-14.	1.0	18
213	Literature Based Discovery Support System and Its Application to Disease Gene Identification. Lecture Notes in Computer Science, 2007, , 307-326.	1.0	3
214	Integrating Domain Knowledge in Equation Discovery. Lecture Notes in Computer Science, 2007, , 69-97.	1.0	7
215	Stepwise Induction of Multi-target Model Trees. Lecture Notes in Computer Science, 2007, , 502-509.	1.0	35
216	Ensembles of Multi-Objective Decision Trees. Lecture Notes in Computer Science, 2007, , 624-631.	1.0	103

#	Article	IF	CITATIONS
217	Evaluation of biomarkers of exposure and effects of mercury using machine-learning methods. Toxicology Letters, 2006, 164, S13-S14.	0.4	0
218	Personality Traits in Miners with Past Occupational Elemental Mercury Exposure. Environmental Health Perspectives, 2006, 114, 290-296.	2.8	32
219	Radon in a thermal spring: Identification of anomalies related to seismic activity. Applied Radiation and Isotopes, 2006, 64, 725-734.	0.7	25
220	First order random forests: Learning relational classifiers with complex aggregates. Machine Learning, 2006, 64, 149-182.	3.4	53
221	Habitat mapping using machine learning-extended kernel-based reclassification of an Ikonos satellite image. Ecological Modelling, 2006, 191, 83-95.	1.2	22
222	The Fourth International Workshop on Environmental Applications of Machine Learning, 27 September–1 October 2004, Bled, Slovenia. Ecological Modelling, 2006, 191, 1-3.	1.2	1
223	Using multi-objective classification to model communities of soil microarthropods. Ecological Modelling, 2006, 191, 131-143.	1.2	46
224	Application of machine learning methods to palaeoecological data. Ecological Modelling, 2006, 191, 159-169.	1.2	0
225	Automatic construction of concept hierarchies: The case of foliage-dwelling spiders. Ecological Modelling, 2006, 191, 144-158.	1.2	7
226	Integrating knowledge-driven and data-driven approaches to modeling. Ecological Modelling, 2006, 194, 3-13.	1.2	56
227	Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecological Modelling, 2006, 194, 14-36.	1.2	33
228	Spruce bark beetles (Ips typographus, Pityogenes chalcographus, Col.: Scolytidae) in the Dinaric mountain forests of Slovenia: Monitoring and modeling. Ecological Modelling, 2006, 194, 219-226.	1.2	31
229	Automated modelling of a food web in lake Bled using measured data and a library of domain knowledge. Ecological Modelling, 2006, 194, 37-48.	1.2	13
230	The Fourth European Conference on Ecological Modelling, September 27–October 1, 2004, Bled, Slovenia. Ecological Modelling, 2006, 194, 1-2.	1.2	1
231	Analysis of Time Series Data with Predictive Clustering Trees. , 2006, , 63-80.		20
232	Learning Predictive Clustering Rules. Lecture Notes in Computer Science, 2006, , 234-250.	1.0	23
233	Towards a General Framework for Data Mining. , 2006, , 259-300.		31

Beam Search Induction and Similarity Constraints for Predictive Clustering Trees. , 2006, , 134-151.

235Itemset Support Queries Using Frequent Itemsets and Their Condensed Representations. Lecture Notes1.0236Inductive Queries on Polynomial Equations. Lecture Notes in Computer Science, 2006, , 127-154.1.0237Relational Data Mining. , 2005, , 869-898.1.0238Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. Lecture Notes in Computer Science, 2005, , 71-88.1.0239Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry, 2005, 20, 1106-1119.1.4240Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. Lecture Notes in Computer Science, 2005, , 272-283.1.0	3 1 1 1 54 23
 Relational Data Mining., 2005, , 869-898. Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. Lecture 1.0 Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry, 2005, 20, 1.4 Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. Lecture 1.0 	1 1 54 23
 Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. Lecture 1.0 Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry, 2005, 20, 1.4 Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. Lecture 10 	1 54 23
 Notes in Computer Science, 2005, , 71-88. Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry, 2005, 20, 1.4 Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. Lecture 10 	54 23
 Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. Lecture 	23
	17
241 Combining model-based and instance-based learning for first order regression. , 2005, , .	1/
242MACHINE LEARNING OF MORPHOSYNTACTIC STRUCTURE: LEMMATIZING UNKNOWN SLOVENE WORDS. Applied Artificial Intelligence, 2004, 18, 17-41.2.0	34
 Is Combining Classifiers with Stacking Better than Selecting the Best One?. Machine Learning, 2004, 54, 255-273. 	619
244 Integrating Guidance into Relational Reinforcement Learning. Machine Learning, 2004, 57, 271-304. 3.4	55
245 EXPERIMENTS IN PREDICTING BIODEGRADABILITY. Applied Artificial Intelligence, 2004, 18, 157-181. 2.0	20
First Order Random Forests with Complex Aggregates. Lecture Notes in Computer Science, 2004, , 1.0 323-340.	16
247 Inducing Polynomial Equations for Regression. Lecture Notes in Computer Science, 2004, , 441-452. 1.0	13
 Inductive Databases of Polynomial Equations. Lecture Notes in Computer Science, 2004, , 159-168. 1.0 	0
249 Combining Classifiers with Meta Decision Trees. Machine Learning, 2003, 50, 223-249. 3.4	159
Learning population dynamics models from data and domain knowledge. Ecological Modelling, 2003, 170, 129-140.	19
 Using equation discovery to revise an Earth ecosystem model of the carbon net production. 1.2 Ecological Modelling, 2003, 170, 141-154. 	16

Using regression trees to identify the habitat preference of the sea cucumber (Holothuria) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{69}$ 62 Td (I

#	Article	IF	CITATIONS
253	Modeling the brown bear population in Slovenia. Ecological Modelling, 2003, 170, 453-469.	1.2	40
254	Application of decision trees to the analysis of soil radon data for earthquake prediction. Applied Radiation and Isotopes, 2003, 58, 697-706.	0.7	86
255	Multi-relational data mining. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2003, 5, 1-16.	3.2	162
256	Modelling Soil Radon Concentration for Earthquake Prediction. Lecture Notes in Computer Science, 2003, , 87-99.	1.0	9
257	Multi-relational data mining. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2003, 5, 100-101.	3.2	9
258	Using Constraints in Discovering Dynamics. Lecture Notes in Computer Science, 2003, , 297-305.	1.0	2
259	Using Domain Specific Knowledge for Automated Modeling. Lecture Notes in Computer Science, 2003, , 48-59.	1.0	2
260	Ranking with Predictive Clustering Trees. Lecture Notes in Computer Science, 2002, , 444-455.	1.0	27
261	Multi-relational data mining. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2002, 4, 122-124.	3.2	7
262	Stacking with Multi-response Model Trees. Lecture Notes in Computer Science, 2002, , 201-211.	1.0	34
263	Encoding and Using Domain Knowledge on Population Dynamics for Equation Discovery. Applied Logic Series, 2002, , 227-247.	0.3	6
264	Stacking with an Extended Set of Meta-level Attributes and MLR. Lecture Notes in Computer Science, 2002, , 493-504.	1.0	4
265	Applications of symbolic machine learning to ecological modelling. Ecological Modelling, 2001, 146, 263-273.	1.2	60
266	Habitat suitability modelling for red deer (Cervus elaphus L.) in South-central Slovenia with classification trees. Ecological Modelling, 2001, 138, 321-330.	1.2	76
267	A reappraisal of saprobic values and indicator weights based on slovenian river quality data. Water Research, 2001, 35, 4285-4292.	5.3	23
268	Modeling and prediction of phytoplankton growth with equation discovery: case study — Lake GlumsÃ, Denmark. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2001, 27, 3626-3631.	0.1	1
269	Editorial: Inductive Logic Programming is Coming of Age. , 2001, 44, 207-209.		2
270	Relational Reinforcement Learning. Machine Learning, 2001, 43, 7-52.	3.4	205

#	Article	IF	CITATIONS
271	Using Domain Knowledge on Population Dynamics Modeling for Equation Discovery. , 2001, , 478-490.		7
272	Theory Revision in Equation Discovery. Lecture Notes in Computer Science, 2001, , 389-400.	1.0	9
273	Relational Data Mining Applications: An Overview. , 2001, , 339-364.		10
274	An Introduction to Inductive Logic Programming. , 2001, , 48-73.		39
275	Computational Discovery of Communicable Knowledge: Symposium Report. Lecture Notes in Computer Science, 2001, , 45-49.	1.0	Ο
276	Predicting Chemical Parameters of River Water Quality from Bioindicator Data. Applied Intelligence, 2000, 13, 7-17.	3.3	110
277	Noise detection and elimination in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence, 2000, 14, 205-223.	2.0	110
278	Application of machine learning techniques to the analysis of soil ecological data bases: relationships between habitat features and Collembolan community characteristics. Soil Biology and Biochemistry, 2000, 32, 197-209.	4.2	31
279	Combining Multiple Models with Meta Decision Trees. Lecture Notes in Computer Science, 2000, , 54-64.	1.0	56
280	Special issue on inductive logic programming 97. New Generation Computing, 1999, 17, 1-2.	2.5	0
281	Inductive logic programming for relational knowledge discovery. New Generation Computing, 1999, 17, 3-23.	2.5	6
282	Interactions among the red deer (Cervus elaphus, L.) population, meteorological parameters and new growth of the natural regenerated forest in Snežnik, Slovenia. Ecological Modelling, 1999, 121, 51-61.	1.2	8
283	Equation discovery with ecological applications. , 1999, , 185-207.		11
284	Morphosyntactic Tagging of Slovene Using Progol. Lecture Notes in Computer Science, 1999, , 68-79.	1.0	12
285	Acquiring background knowledge for machine learning using function decomposition: a case study in rheumatology. Artificial Intelligence in Medicine, 1998, 14, 101-117.	3.8	7
286	Modelling and prediction of phytoplankton growth with equation discovery. Ecological Modelling, 1998, 113, 71-81.	1.2	31
287	Diterpene structure elucidation from 13cnmr spectra with inductive logic programming. Applied Artificial Intelligence, 1998, 12, 363-383.	2.0	27
288	Relational reinforcement learning. Lecture Notes in Computer Science, 1998, , 11-22.	1.0	51

#	Article	IF	CITATIONS
289	Learning multilingual morphology with Clog. Lecture Notes in Computer Science, 1998, , 135-144.	1.0	19
290	Acquiring and validating background knowledge for machine learning using function decomposition. Lecture Notes in Computer Science, 1997, , 86-97.	1.0	1
291	Using machine learning techniques in the construction of models. II. Data analysis with rule induction. Ecological Modelling, 1997, 95, 95-111.	1.2	47
292	Applying ILP to diterpene structure elucidation from 13C NMR spectra. Lecture Notes in Computer Science, 1997, , 41-54.	1.0	14
293	Diterpene Structure Elucidation from 13C NMR-Spectra with Machine Learning. , 1997, , 207-225.		5
294	Noise Elimination Applied to Early Diagnosis of Rheumatic Diseases. , 1997, , 187-205.		1
295	A Reply to Pazzani's Book Review of "Inductive Logic Programming: Techniques and Applications". Machine Learning, 1996, 23, 109-111.	3.4	0
296	A reply to Pazzani's book review of "Inductive Logic Programming: Techniques and Applications― Machine Learning, 1996, 23, 109-111.	3.4	2
297	ILPNET repositories on WWW: Inductive Logic Programming systems, datasets and bibliography. Al Communications, 1996, 9, 157-206.	0.8	4
298	Rule induction and instance-based learning applied in medical diagnosis. Technology and Health Care, 1996, 4, 203-221.	0.5	17
299	Noise elimination in inductive concept learning: A case study in medical diagnosis. Lecture Notes in Computer Science, 1996, , 199-212.	1.0	45
300	Discovering dynamics: From inductive logic programming to machine discovery. Journal of Intelligent Information Systems, 1995, 4, 89-108.	2.8	62
301	Engineering applications of ILP. New Generation Computing, 1995, 13, 313-333.	2.5	3
302	Handling real numbers in ILP: A step towards better behavioural clones (Extended abstract). Lecture Notes in Computer Science, 1995, , 283-286.	1.0	6
303	Inductive logic programming and learnability. ACM SIGART Bulletin, 1994, 5, 22-32.	0.5	39
304	Weakening the language bias in LINUS. Journal of Experimental and Theoretical Artificial Intelligence, 1994, 6, 95-119.	1.8	4
305	First-order jk-clausal theories are PAC-learnable. Artificial Intelligence, 1994, 70, 375-392.	3.9	123
306	Using machine learning techniques in the construction of models I. Introduction. Ecological Modelling, 1994, 75-76, 617-628.	1.2	21

#	Article	IF	CITATIONS
307	Discovering dynamics with genetic programming. Lecture Notes in Computer Science, 1994, , 347-350.	1.0	1
308	THE UTILITY OF BACKGROUND KNOWLEDGE IN LEARNING MEDICAL DIAGNOSTIC RULES. Applied Artificial Intelligence, 1993, 7, 273-293.	2.0	35
309	Inductive learning in deductive databases. IEEE Transactions on Knowledge and Data Engineering, 1993, 5, 939-949.	4.0	21
310	Discovering Dynamics. , 1993, , 97-103.		19
311	Learnability of constrained logic programs. Lecture Notes in Computer Science, 1993, , 342-347.	1.0	4
312	PAC-learnability of determinate logic programs. , 1992, , .		76
313	Background knowledge and declarative bias in inductive concept learning. Lecture Notes in Computer Science, 1992, , 51-71.	1.0	5
314	Learning nonrecursive definitions of relations with linus. , 1991, , 265-281.		85
315	Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL. , 1991, , 399-402.		7
316	Feature ranking for semi-supervised learning. Machine Learning, 0, , .	3.4	0