Dirk Bohmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8312307/publications.pdf

Version: 2024-02-01

30 papers

4,580 citations

279798 23 h-index 454955 30 g-index

31 all docs

31 docs citations

times ranked

31

5786 citing authors

#	Article	IF	CITATIONS
1	Preserving transcriptional stress responses as an antiâ€aging strategy. Aging Cell, 2021, 20, e13297.	6.7	6
2	Counting the Minutes. ELife, 2020, 9, .	6.0	3
3	SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell, 2019, 177, 622-638.e22.	28.9	225
4	BETâ€ting on Nrf2: How Nrf2 Signaling can Influence the Therapeutic Activities of BET Protein Inhibitors. BioEssays, 2018, 40, e1800007.	2.5	19
5	Methylation of the phosphataseâ€transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB Journal, 2017, 31, 2327-2339.	0.5	3
6	Cdk12 Is A Gene-Selective RNA Polymerase II Kinase That Regulates a Subset of the Transcriptome, Including Nrf2 Target Genes. Scientific Reports, 2016, 6, 21455.	3.3	33
7	Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein. PLoS Genetics, 2016, 12, e1006072.	3.5	26
8	Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radical Biology and Medicine, 2015, 88, 302-313.	2.9	82
9	Declining signal dependence of <scp>N</scp> rf2â€ <scp>M</scp> af <scp>S</scp> â€regulated gene expression correlates with aging phenotypes. Aging Cell, 2013, 12, 554-562.	6.7	91
10	Proteasome dysfunction in <i>Drosophila</i> signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell, 2013, 12, 802-813.	6.7	98
11	Differential regulation of proteasome functionality in reproductive <i>vs.</i> somatic tissues of <i>Drosophila</i> during aging or oxidative stress. FASEB Journal, 2013, 27, 2407-2420.	0.5	85
12	Molecular Analyses Of The Effects Induced By Orally Administered Bortezomib In Drosophila Flies: A Novel In Vivo Experimental Platform To Screen For The Tissue- and Age-Dependent Effects Of Proteasome Inhibitors. Blood, 2013, 122, 2910-2910.	1.4	1
13	A Versatile $\hat{l} \mid$ C31 Based Reporter System for Measuring AP-1 and Nrf2 Signaling in Drosophila and in Tissue Culture. PLoS ONE, 2012, 7, e34063.	2.5	195
14	Redox Regulation by Keap1 and Nrf2 Controls Intestinal Stem Cell Proliferation in Drosophila. Cell Stem Cell, 2011, 8, 188-199.	11.1	306
15	The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 41-48.	2.5	191
16	Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a <i>Drosophila</i> model of Parkinson's disease. DMM Disease Models and Mechanisms, 2011, 4, 701-707.	2.4	109
17	Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease. Science Signaling, 2010, 3, re3.	3.6	660
18	JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mechanisms of Development, 2009, 126, 624-637.	1.7	112

#	Article	IF	CITATIONS
19	Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila. Developmental Cell, 2008, 14, 76-85.	7. O	577
20	Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation. EMBO Journal, 2007, 26, 380-390.	7.8	118
21	JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO Journal, 2006, 25, 5294-5304.	7.8	356
22	JNK signaling coordinates integrin and actin functions duringDrosophilaembryogenesis. Developmental Dynamics, 2006, 235, 427-434.	1.8	66
23	Control of G 2 /M Transition by Drosophila Fos. Molecular and Cellular Biology, 2006, 26, 8293-8302.	2.3	26
24	JNK Extends Life Span and Limits Growth by Antagonizing Cellular and Organism-Wide Responses to Insulin Signaling. Cell, 2005, 121, 115-125.	28.9	481
25	JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila. Developmental Cell, 2003, 5, 811-816.	7.0	373
26	An essential function of AP-1 heterodimers in Drosophila development. Mechanisms of Development, 2002, 115, 35-40.	1.7	21
27	Transrepression of AP-1 by nuclear receptors in Drosophila. Mechanisms of Development, 2002, 115, 91-100.	1.7	4
28	The Genomic Response of the Drosophila Embryo to JNK Signaling. Developmental Cell, 2001, 1, 579-586.	7.0	104
29	Drosophila AP-1: lessons from an invertebrate. Oncogene, 2001, 20, 2347-2364.	5.9	132
30	$\langle i \rangle$ Drosophila $\langle i \rangle$ Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes and Development, 2001, 15, 1540-1553.	5.9	77