Johannes Felix Buyel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8311445/publications.pdf

Version: 2024-02-01

70 papers 2,117 citations

236925 25 h-index 254184 43 g-index

75 all docs

75 docs citations

75 times ranked 1360 citing authors

#	Article	IF	CITATIONS
1	Statistical Designs to Improve Downstream Processing. Methods in Molecular Biology, 2022, , 295-310.	0.9	3
2	Strategies for Efficient and Sustainable Protein Extraction and Purification from Plant Tissues. Methods in Molecular Biology, 2022, , 127-145.	0.9	3
3	Spherical nanoparticles can be used as non-penetrating tracers to determine the extra-particle void volume in packed-bed chromatography columns. Journal of Chromatography A, 2022, 1675, 463174.	3.7	2
4	The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labelling for <scp>NMR</scp> spectroscopy. Plant Biotechnology Journal, 2022, 20, 1928-1939.	8.3	5
5	Reducing water uptake into BYâ€2 cells by systematically optimizing the cultivation parameters increases product yields achieved by transient expression in plant cell packs. Biotechnology Journal, 2022, 17, .	3.5	4
6	On the verge of the market – Plant factories for the automated and standardized production of biopharmaceuticals. Biotechnology Advances, 2021, 46, 107681.	11.7	40
7	A combined pH and temperature precipitation step facilitates the purification of tobaccoâ€derived recombinant proteins that are sensitive to extremes of either parameter. Biotechnology Journal, 2021, 16, e2000340.	3.5	10
8	Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnology Advances, 2021, 47, 107683.	11.7	20
9	Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Research, 2021, 30, 401-426.	2.4	29
10	Cryopreservation of plant cell cultures – Diverse practices and protocols. New Biotechnology, 2021, 62, 86-95.	4.4	11
11	Contributions of the international plant science community to the fight against infectious diseases in humansâ€"part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
12	Preface: Genome editing in plants. Transgenic Research, 2021, 30, 317-320.	2.4	2
13	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
14	Precision analysis for the determination of steric mass action parameters using eight tobacco host cell proteins. Journal of Chromatography A, 2021, 1652, 462379.	3.7	7
15	Expression of Biofilm-Degrading Enzymes in Plants and Automated High-Throughput Activity Screening Using Experimental Bacillus subtilis Biofilms. Frontiers in Bioengineering and Biotechnology, 2021, 9, 708150.	4.1	6
16	Nicotiana spp. for the Expression and Purification of Functional IgG3 Antibodies Directed Against the Staphylococcus aureus Alpha Toxin. Frontiers in Chemical Engineering, 2021, 3, .	2.7	8
17	The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. Frontiers in Plant Science, 2020, 11, 594019.	3.6	48
18	A combined temperature and pH precipitation step facilitates the purification of tobaccoâ€derived recombinant proteins that are sensitive to both conditions. Chemie-Ingenieur-Technik, 2020, 92, 1215-1215.	0.8	0

#	Article	IF	Citations
19	Robot Cookies – Plant Cell Packs as an Automated High-Throughput Screening Platform Based on Transient Expression. Frontiers in Bioengineering and Biotechnology, 2020, 8, 393.	4.1	27
20	Molecular farming – The slope of enlightenment. Biotechnology Advances, 2020, 40, 107519.	11.7	116
21	Non-invasive Imaging and Modeling of Liver Regeneration After Partial Hepatectomy. Frontiers in Physiology, 2019, 10, 904.	2.8	7
22	Seasonal Weather Changes Affect the Yield and Quality of Recombinant Proteins Produced in Transgenic Tobacco Plants in a Greenhouse Setting. Frontiers in Plant Science, 2019, 10, 1245.	3.6	24
23	Activated Cross-linked Agarose for the Rapid Development of Affinity Chromatography Resins - Antibody Capture as a Case Study. Journal of Visualized Experiments, 2019, , .	0.3	5
24	Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnology Journal, 2019, 17, 1560-1566.	8.3	39
25	Readyâ€toâ€Use Stocks of Agrobacterium tumefaciens Can Simplify Process Development for the Production of Recombinant Proteins by Transient Expression in Plants. Biotechnology Journal, 2019, 14, 1900113.	3.5	9
26	Comparison of microbial and transient expression (tobacco plants and plantâ€cell packs) for the production and purification of the anticancer mistletoe lectin viscumin. Biotechnology and Bioengineering, 2019, 116, 2236-2249.	3.3	37
27	The Correlation Between <i>DsRed</i> mRNA Levels and Transient DsRed Protein Expression in Plants Depends on Leaf Age and the 5′ Untranslated Region. Biotechnology Journal, 2019, 14, 1800075.	3.5	10
28	Plants as sources of natural and recombinant anti-cancer agents. Biotechnology Advances, 2018, 36, 506-520.	11.7	151
29	Bioreactor-Based Production of Glycoproteins in Plant Cell Suspension Cultures. Methods in Molecular Biology, 2018, 1674, 129-146.	0.9	4
30	Using quantitative structure-activity relationship models to predict protein properties for chromatographic separation of host cell proteins. Chemie-Ingenieur-Technik, 2018, 90, 1300-1300.	0.8	0
31	Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expression and Purification, 2018, 152, 122-130.	1.3	22
32	Glyco-Engineering of Plant-Based Expression Systems. Advances in Biochemical Engineering/Biotechnology, 2018, 175, 137-166.	1.1	13
33	A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies. Journal of Chromatography A, 2018, 1571, 55-64.	3.7	14
34	Expression and purification of human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems. Protein Expression and Purification, 2018, 151, 46-55.	1.3	15
35	A Combined Ultrafiltration/Diafiltration Step Facilitates the Purification of Cyanovirin-N From Transgenic Tobacco Extracts. Frontiers in Bioengineering and Biotechnology, 2018, 6, 206.	4.1	25
36	Plant Molecular Farming – Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. Frontiers in Plant Science, 2018, 9, 1893.	3.6	94

#	Article	IF	CITATIONS
37	Animal componentâ€free <i>Agrobacterium tumefaciens</i> cultivation media for better GMPâ€compliance increases biomass yield and pharmaceutical protein expression in <i>Nicotiana benthamiana</i> Biotechnology Journal, 2017, 12, 1600721.	3.5	25
38	How Plants Can Contribute to the Supply of Anticancer Compounds. , 2017, , 39-72.		3
39	Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnology Advances, 2017, 35, 458-465.	11.7	131
40	Improvement of a fermentation process for the production of two PfAMA1-DiCo-based malaria vaccine candidates in Pichia pastoris. Scientific Reports, 2017, 7, 11991.	3.3	19
41	A Rapid Laser Probing Method Facilitates the Non-invasive and Contact-free Determination of Leaf Thermal Properties. Journal of Visualized Experiments, 2017, , .	0.3	0
42	Production of Functional Anti-Ebola Antibodies in <i>Pichia pastoris</i> . ACS Synthetic Biology, 2017, 6, 2183-2190.	3.8	15
43	Optimized Blanching Reduces the Host Cell Protein Content and Substantially Enhances the Recovery and Stability of Two Plant-Derived Malaria Vaccine Candidates. Frontiers in Plant Science, 2016, 7, 159.	3.6	33
44	Polyclonal antibodies for specific detection of tobacco host cell proteins can be efficiently generated following RuBisCO depletion and the removal of endotoxins. Biotechnology Journal, 2016, 11, 507-518.	3.5	20
45	Analysis of the dose-dependent stage-specific in vitro efficacy of a multi-stage malaria vaccine candidate cocktail. Malaria Journal, 2016, 15, 279.	2.3	19
46	Procedure to Evaluate the Efficiency of Flocculants for the Removal of Dispersed Particles from Plant Extracts. Journal of Visualized Experiments, 2016, , .	0.3	4
47	Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts. Journal of Visualized Experiments, 2016, , .	0.3	16
48	Determination of the thermal properties of leaves by non-invasive contactâ€'free laser probing. Journal of Biotechnology, 2016, 217, 100-108.	3.8	20
49	Numeric simulation can be used to predict heat transfer during the blanching of leaves and intact plants. Biochemical Engineering Journal, 2016, 109, 118-126.	3.6	12
50	Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers. Frontiers in Plant Science, 2015, 6, 1134.	3.6	20
51	Controlling the interplay between Agrobacterium tume faciens and plants during the transient expression of proteins. Bioengineered, 2015, 6, 242-244.	3.2	3
52	The impact of <i><scp>P</scp>seudomonas syringae</i> type <scp>III</scp> effectors on transient protein expression in tobacco. Plant Biology, 2015, 17, 484-492.	3.8	19
53	Synthetic polymers are more effective than natural flocculants for the clarification of tobacco leaf extracts. Journal of Biotechnology, 2015, 195, 37-42.	3.8	11
54	Celluloseâ€based filter aids increase the capacity of depth filters during the downstream processing of plantâ€derived biopharmaceutical proteins. Biotechnology Journal, 2015, 10, 584-591.	3.5	28

#	Article	IF	CITATIONS
55	Extraction and downstream processing of plant-derived recombinant proteins. Biotechnology Advances, 2015, 33, 902-913.	11.7	125
56	A juice extractor can simplify the downstream processing of plant-derived biopharmaceutical proteins compared to blade-based homogenizers. Process Biochemistry, 2015, 50, 859-866.	3.7	27
57	Process Development Strategies in Plant Molecular Farming. Current Pharmaceutical Biotechnology, 2015, 16, 966-982.	1.6	41
58	Scaleâ€down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves. Biotechnology Journal, 2014, 9, 415-425.	3.5	62
59	Downstream processing of biopharmaceutical proteins produced in plants. Bioengineered, 2014, 5, 138-142.	3.2	46
60	Molecular Farming in Plants: The Long Road to the Market. Biotechnology in Agriculture and Forestry, 2014, , 27-41.	0.2	7
61	Generic chromatographyâ€based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants. Biotechnology Journal, 2014, 9, 566-577.	3.5	35
62	Flocculation increases the efficacy of depth filtration during the downstream processing of recombinant pharmaceutical proteins produced in tobacco. Plant Biotechnology Journal, 2014, 12, 240-252.	8.3	54
63	Rational design of a host cell protein heat precipitation step simplifies the subsequent purification of recombinant proteins from tobacco. Biochemical Engineering Journal, 2014, 88, 162-170.	3.6	51
64	Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study. Journal of Visualized Experiments, 2014, , e51216.	0.3	16
65	The use of quantitative structure–activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. Journal of Chromatography A, 2013, 1322, 18-28.	3.7	45
66	Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5′UTR combination. Biotechnology and Bioengineering, 2013, 110, 471-482.	3.3	34
67	Processing heterogeneous biomass: Overcoming the hurdles in model building. Bioengineered, 2013, 4, 21-24.	3.2	20
68	Commercial Aspects of Pharmaceutical Protein Production in Plants. Current Pharmaceutical Design, 2013, 19, 5471-5477.	1.9	114
69	Extraction, purification and characterization of the plant-produced HPV16 subunit vaccine candidate E7 GGG. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 880, 19-26.	2.3	31
70	Predictive models for transient protein expression in tobacco (<i>Nicotiana tabacum</i> L.) can optimize process time, yield, and downstream costs. Biotechnology and Bioengineering, 2012, 109, 2575-2588.	3.3	115