
Darren J Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8310678/publications.pdf Version: 2024-02-01

DADDEN I MOODE

#	Article	IF	CITATIONS
1	Understanding the contributions of VPS35 and the retromer in neurodegenerative disease. Neurobiology of Disease, 2022, 170, 105768.	4.4	14
2	Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's Disease, 2022, 12, 1423-1447.	2.8	8
3	Neuronal <i>VPS35</i> deletion induces spinal cord motor neuron degeneration and early post-natal lethality. Brain Communications, 2021, 3, fcab208.	3.3	15
4	Multiple genetic pathways regulating lifespan extension are neuroprotective in a G2019S LRRK2 nematode model of Parkinson's disease. Neurobiology of Disease, 2021, 151, 105267.	4.4	7
5	Mechanisms of VPS35-mediated neurodegeneration in Parkinson's disease. International Review of Movement Disorders, 2021, 2, 221-244.	0.1	7
6	LRRK2 and the Endolysosomal System in Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 1271-1291.	2.8	52
7	LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Frontiers in Neuroscience, 2020, 14, 719.	2.8	13
8	Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17296-17307.	7.1	47
9	Endosomal sorting pathways in the pathogenesis of Parkinson's disease. Progress in Brain Research, 2020, 252, 271-306.	1.4	16
10	Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal α-synuclein preformed fibrils. Neurobiology of Disease, 2019, 130, 104525.	4.4	67
11	Parkinson's disease-linked <i>D620N VPS35</i> knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5765-5774.	7.1	77
12	Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathologica Communications, 2019, 7, 41.	5.2	133
13	G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Human Molecular Genetics, 2018, 27, 120-134.	2.9	37
14	Deciphering the role of VPS35 in Parkinson's disease. Journal of Neuroscience Research, 2018, 96, 1339-1340.	2.9	3
15	Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting. Human Molecular Genetics, 2018, 27, 3189-3205.	2.9	53
16	Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neuron <i>s</i> . Human Molecular Genetics, 2017, 26, ddw418.	2.9	50
17	Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochemical Society Transactions, 2017, 45, 163-172.	3.4	48
18	VPS35, the Retromer Complex and Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 219-233.	2.8	131

Darren J Moore

#	Article	IF	CITATIONS
19	Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Advances in Neurobiology, 2017, 14, 71-88.	1.8	49
20	Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7, 11792.	12.8	56
21	Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a <i>Drosophila</i> model of Parkinson's disease. Human Molecular Genetics, 2016, 25, ddw352.	2.9	61
22	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
23	Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. Neurobiology of Disease, 2015, 77, 49-61.	4.4	44
24	α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Neurobiology of Disease, 2015, 73, 229-243.	4.4	32
25	Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Human Molecular Genetics, 2014, 23, 2055-2077.	2.9	113
26	Modeling LRRK2 Pathobiology in Parkinson's Disease: From Yeast to Rodents. Current Topics in Behavioral Neurosciences, 2014, 22, 331-368.	1.7	18
27	Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Human Molecular Genetics, 2014, 23, 4621-4638.	2.9	126
28	A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Human Molecular Genetics, 2014, 23, 4887-4905.	2.9	45
29	Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. Neurobiology of Disease, 2014, 71, 345-358.	4.4	59
30	LRRK2 secretion in exosomes is regulated by 14-3-3. Human Molecular Genetics, 2013, 22, 4988-5000.	2.9	142
31	GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2013, 22, 1140-1156.	2.9	124
32	Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiology of Disease, 2013, 58, 183-190.	4.4	44
33	Contribution of GTPase activity toLRRK2-associated Parkinson disease. Small GTPases, 2013, 4, 164-170.	1.6	48
34	GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1. PLoS Genetics, 2012, 8, e1002526.	3.5	122
35	PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Human Molecular Genetics, 2012, 21, 1725-1743.	2.9	143
36	Neurodegenerative phenotypes in an A53T Â-synuclein transgenic mouse model are independent of LRRK2. Human Molecular Genetics, 2012, 21, 2420-2431.	2.9	84

DARREN J MOORE

#	Article	IF	CITATIONS
37	Mitochondrial Dysfunction in Genetic Animal Models of Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 16, 896-919.	5.4	77
38	α-Synuclein in Central Nervous System and from Erythrocytes, Mammalian Cells, and Escherichia coli Exists Predominantly as Disordered Monomer. Journal of Biological Chemistry, 2012, 287, 15345-15364.	3.4	466
39	Mechanisms of LRRK2-Mediated Neurodegeneration. Current Neurology and Neuroscience Reports, 2012, 12, 251-260.	4.2	61
40	Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism. PLoS ONE, 2012, 7, e39942.	2.5	59
41	Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations. PLoS ONE, 2012, 7, e47784.	2.5	39
42	Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2. PLoS ONE, 2011, 6, e18568.	2.5	338
43	Localization of MAP1-LC3 in Vulnerable Neurons and Lewy Bodies in Brains of Patients With Dementia With Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2011, 70, 264-280.	1.7	55
44	Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. Journal of Neurochemistry, 2011, 118, 636-645.	3.9	214
45	Genetic Mouse Models of Neurodegenerative Diseases. Progress in Molecular Biology and Translational Science, 2011, 100, 419-482.	1.7	37
46	A Rat Model of Progressive Nigral Neurodegeneration Induced by the Parkinson's Disease-Associated G2019S Mutation in LRRK2. Journal of Neuroscience, 2011, 31, 907-912.	3.6	135
47	Parkin reinvents itself to regulate fatty acid metabolism by tagging CD36. Journal of Clinical Investigation, 2011, 121, 3389-3392.	8.2	18
48	Reevaluation of Phosphorylation Sites in the Parkinson Disease-associated Leucine-rich Repeat Kinase 2. Journal of Biological Chemistry, 2010, 285, 29569-29576.	3.4	48
49	PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 378-383.	7.1	1,415
50	GTPase Activity Plays a Key Role in the Pathobiology of LRRK2. PLoS Genetics, 2010, 6, e1000902.	3.5	177
51	CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proceedings of the United States of America, 2009, 106, 2897-2902.	7.1	195
52	Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. Molecular Neurodegeneration, 2009, 4, 34.	10.8	79
53	Revelations and revolutions in the understanding of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 585-586.	3.8	3
54	Abnormal Localization of Leucine-Rich Repeat Kinase 2 to the Endosomal-Lysosomal Compartment in Lewy Body Disease. Journal of Neuropathology and Experimental Neurology, 2009, 68, 994-1005.	1.7	75

DARREN J MOORE

#	Article	IF	CITATIONS
55	Value of genetic models in understanding the cause and mechanisms of Parkinson's disease. Current Neurology and Neuroscience Reports, 2008, 8, 288-296.	4.2	41
56	Parkin mediates the degradationâ€independent ubiquitination of Hsp70. Journal of Neurochemistry, 2008, 105, 1806-1819.	3.9	101
57	The biology and pathobiology of LRRK2: Implications for Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S92-S98.	2.2	24
58	The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2. Journal of Neuroscience, 2008, 28, 3384-3391.	3.6	178
59	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Human Molecular Genetics, 2007, 16, 223-232.	2.9	535
60	Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. Journal of Neurochemistry, 2007, 100, 368-381.	3.9	101
61	Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neuroscience, 2007, 8, 102.	1.9	135
62	Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Research, 2007, 1155, 208-219.	2.2	139
63	Detrimental deletions: mitochondria, aging and Parkinson's disease. BioEssays, 2006, 28, 963-967.	2.5	34
64	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 2006, 60, 557-569.	5.3	479
65	Lessons from Drosophila Models of DJ-1 Deficiency. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe2-pe2.	0.8	27
66	Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Human Molecular Genetics, 2005, 14, 71-84.	2.9	231
67	Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18676-18681.	7.1	390
68	Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Human Molecular Genetics, 2005, 14, 2063-2073.	2.9	381
69	MOLECULAR PATHOPHYSIOLOGY OF PARKINSON'S DISEASE. Annual Review of Neuroscience, 2005, 28, 57-87.	10.7	1,111
70	Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16842-16847.	7.1	1,084
71	Role for the Ubiquitin-Proteasome System in Parkinson's Disease and Other Neurodegenerative Brain Amyloidoses. NeuroMolecular Medicine, 2003, 4, 95-108.	3.4	50
72	A missense mutation (L166P) in DJâ€1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homoâ€oligomerization. Journal of Neurochemistry, 2003, 87, 1558-1567.	3.9	198