Justyna Widomska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8310122/publications.pdf

Version: 2024-02-01

331670 434195 32 1,256 21 31 citations h-index g-index papers 32 32 32 1335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of cholesterol in maintaining the physical properties of the plasma membrane. , 2022, , 41-71.		O
2	Multilamellar Liposomes as a Model for Biological Membranes: Saturation Recovery EPR Spin-Labeling Studies. Membranes, 2022, 12, 657.	3.0	2
3	Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants, 2021, 10, 601.	5.1	14
4	Factors Determining Barrier Properties to Oxygen Transport Across Model and Cell Plasma Membranes Based on EPR Spin-Label Oximetry. Applied Magnetic Resonance, 2021, 52, 1237.	1.2	4
5	Why Is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea?. Nutrients, 2020, 12, 1333.	4.1	24
6	Mechanisms enhancing the protective functions of macular xanthophylls in the retina during oxidative stress. Experimental Eye Research, 2019, 178, 238-246.	2.6	13
7	The effect of carotenoids on the concentration of singlet oxygen in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 845-851.	2.6	25
8	Why Is Very High Cholesterol Content Beneficial for the Eye Lens but Negative for Other Organs?. Nutrients, 2019, 11, 1083.	4.1	26
9	Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids Acta Biochimica Polonica, 2019, 53, 475-484.	0.5	64
10	High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 2017, 75, 369-385.	1.8	204
11	Cholesterol Bilayer Domains in the Eye Lens Health: A Review. Cell Biochemistry and Biophysics, 2017, 75, 387-398.	1.8	29
12	Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes. Advances in Experimental Medicine and Biology, 2017, 977, 27-34.	1.6	10
13	Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?. Foods, 2016, 5, 7.	4.3	49
14	Why has Nature Chosen Lutein and Zeaxanthin to Protect the Retina?. Journal of Clinical & Experimental Ophthalmology, 2014, 05, 326.	0.1	58
15	The influence of lead on the biomechanical properties of bone tissue in rats. Annals of Agricultural and Environmental Medicine, 2014, 21, 278-281.	1.0	10
16	Modeling gender effects on electrical activity of single ventricular myocytes. Computers in Biology and Medicine, 2013, 43, 1063-1072.	7.0	5
17	Functions of Cholesterol and the Cholesterol Bilayer Domain Specific to the Fiber-Cell Plasma Membrane of the Eye Lens. Journal of Membrane Biology, 2012, 245, 51-68.	2.1	64
18	Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?. Acta Biochimica Polonica, 2012, 59, .	0.5	10

#	Article	IF	Citations
19	Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?. Acta Biochimica Polonica, 2012, 59, 109-14.	0.5	6
20	The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1072-1080.	2.6	58
21	Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chemistry and Physics of Lipids, 2011, 164, 819-829.	3.2	60
22	Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes. Archives of Biochemistry and Biophysics, 2010, 504, 61-66.	3.0	59
23	Studying Lipid Organization in Biological Membranes Using Liposomes and EPR Spin Labeling. Methods in Molecular Biology, 2010, 606, 247-269.	0.9	50
24	Physical properties of lipid bilayers from EPR spin labeling and their influence on chemical reactions in a membrane environment. Free Radical Biology and Medicine, 2009, 46, 707-718.	2.9	69
25	Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers. Biophysical Chemistry, 2009, 140, 108-114.	2.8	33
26	Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2380-2388.	2.6	46
27	Transmembrane localization of cis-isomers of zeaxanthin in the host dimyristoylphosphatidylcholine bilayer membrane. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 10-19.	2.6	8
28	Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1079-1090.	2.6	41
29	Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1454-1465.	2.6	50
30	Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2635-2645.	2.6	104
31	Saturation-Recovery Electron Paramagnetic Resonance Discrimination by Oxygen Transport (DOT) Method for Characterizing Membrane Domains. Methods in Molecular Biology, 2007, 398, 143-157.	0.9	40
32	Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochimica Polonica, 2006, 53, 475-84.	0.5	21