Olivier Hagolle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309964/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sensing of Environment, 2007, 110, 275-286.	11.0	734
2	A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENÂμS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 2010, 114, 1747-1755.	11.0	345
3	Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sensing, 2015, 7, 12356-12379.	4.0	262
4	A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sensing, 2015, 7, 2668-2691.	4.0	219
5	Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment, 2019, 221, 551-568.	11.0	216
6	Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 2012, 124, 844-857.	11.0	213
7	Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain. Remote Sensing of Environment, 2013, 130, 25-38.	11.0	163
8	Atmospheric Correction Inter-Comparison Exercise. Remote Sensing, 2018, 10, 352.	4.0	156
9	Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France. Remote Sensing of Environment, 2013, 139, 216-230.	11.0	155
10	Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sensing, 2019, 11, 433.	4.0	149
11	Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sensing of Environment, 2010, 114, 2500-2512.	11.0	147
12	Results of POLDER in-flight calibration. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 1550-1566.	6.3	127
13	PARASOL in-flight calibration and performance. Applied Optics, 2007, 46, 5435.	2.1	124
14	Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth System Science Data, 2019, 11, 493-514.	9.9	123
15	A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Sciences, 2015, 19, 2337-2351.	4.9	120
16	Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images. Remote Sensing of Environment, 2008, 112, 1689-1701.	11.0	119
17	Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring. Remote Sensing of Environment, 2009, 113, 716-729.	11.0	112
18	Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sensing, 2016, 8, 55.	4.0	99

OLIVIER HAGOLLE

#	Article	IF	CITATIONS
19	Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sensing of Environment, 2015, 160, 72-86.	11.0	95
20	Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series. Sensors, 2008, 8, 2774-2791.	3.8	89
21	Quality assessment and improvement of temporally composited products of remotely sensed imagery by combination of VEGETATION 1 and 2 images. Remote Sensing of Environment, 2005, 94, 172-186.	11.0	81
22	Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 2011, 115, 615-627.	11.0	76
23	A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements. Remote Sensing, 2015, 7, 15494-15516.	4.0	70
24	Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data. Remote Sensing, 2014, 6, 10002-10032.	4.0	67
25	Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrology and Earth System Sciences, 2011, 15, 1117-1129.	4.9	66
26	SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites. Remote Sensing, 2015, 7, 12242-12264.	4.0	66
27	Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 2022, 274, 112990.	11.0	64
28	Geolocation Assessment of MERIS GlobCover Orthorectified Products. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2972-2982.	6.3	63
29	The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sensing of Environment, 2015, 170, 216-228.	11.0	60
30	Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sensing, 2015, 7, 10400-10424.	4.0	54
31	Impact of climate and land cover changes on snow cover in a small Pyrenean catchment. Journal of Hydrology, 2015, 521, 84-99.	5.4	53
32	A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sensing, 2016, 8, 696.	4.0	53
33	The MISTIGRI thermal infrared project: scientific objectives and mission specifications. International Journal of Remote Sensing, 2013, 34, 3437-3466.	2.9	52
34	A cloud detection method based on a time series of MODIS surface reflectance images. International Journal of Digital Earth, 2013, 6, 157-171.	3.9	52
35	Impact of Sowing Date on Yield and Water Use Efficiency of Wheat Analyzed through Spatial Modeling and FORMOSAT-2 Images. Remote Sensing, 2015, 7, 5951-5979.	4.0	50
36	Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2. Remote Sensing, 2015, 7, 16062-16090.	4.0	47

OLIVIER HAGOLLE

#	Article	IF	CITATIONS
37	The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Annals of Forest Science, 2006, 63, 579-595.	2.0	41
38	Uncertainty assessment of surface net radiation derived from Landsat images. Remote Sensing of Environment, 2016, 175, 251-270.	11.0	39
39	Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region. Hydrology and Earth System Sciences, 2010, 14, 1731-1744.	4.9	38
40	Absolute calibration of VEGETATION derived from an interband method based on the Sun glint over ocean. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 1472-1481.	6.3	34
41	Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS). Advances in Space Research, 2003, 32, 2253-2261.	2.6	33
42	Assessing the Potentialities of FORMOSAT-2 Data for Water and Crop Monitoring at Small Regional Scale in South-Eastern France. Sensors, 2008, 8, 3460-3481.	3.8	31
43	Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, 2020, 12, 2904.	4.0	30
44	A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco. Remote Sensing, 2014, 6, 11182-11203.	4.0	27
45	Interband calibration over clouds for POLDER space sensor. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40, 131-142.	6.3	25
46	Using Copernicus Atmosphere Monitoring Service Products to Constrain the Aerosol Type in the Atmospheric Correction Processor MAJA. Remote Sensing, 2017, 9, 1230.	4.0	24
47	In-flight calibration of the POLDER polarized channels using the Sun's glitter. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 513-524.	6.3	21
48	MACCS-ATCOR joint algorithm (MAJA). Proceedings of SPIE, 2016, , .	0.8	21
49	Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions. Remote Sensing, 2015, 7, 12057-12075.	4.0	20
50	Development of an index-based insurance product: validation of a forage production index derived from medium spatial resolution fCover time series. GIScience and Remote Sensing, 2015, 52, 94-113.	5.9	19
51	Remote sensing data respository for in-flight calibration of optical sensors over terrestrial targets. , 1999, 3750, 514.		18
52	Calibration of SPOT4 HRVIR and Vegetation cameras over Rayleigh scattering. , 2000, 4135, 302.		15
53	Validation of a Forage Production Index (FPI) Derived from MODIS fCover Time-Series Using High-Resolution Satellite Imagery: Methodology, Results and Opportunities. Remote Sensing, 2015, 7, 11525-11550.	4.0	14
54	<title>POLDER on-ground stray light analysis, calibration, and correction</title> ., 1997, 3221, 132.		13

OLIVIER HAGOLLE

#	Article	IF	CITATIONS
55	<title>POLDER level-1 processing algorithms</title> . , 1996, , .		12
56	In-flight polarization calibration of POLDER. , 1997, , .		9
57	Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products. , 2008, , .		9
58	VENµS (Vegetation and environment monitoring on a new micro satellite). , 2010, , .		9
59	Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & amp; amp; Ice Monitoring Service. Cryosphere, 2021, 15, 4975-4980.	3.9	9
60	VENÂ μ S: PERFORMANCES AND FIRST RESULTS AFTER 11 MONTHS IN ORBIT. , 2018, , .		8
61	Atmospheric Correction of Multi-Spectral Littoral Images Using a PHOTONS/AERONET-Based Regional Aerosol Model. Remote Sensing, 2017, 9, 814.	4.0	6
62	Evaluation of Methods for Mapping the Snow Cover Area at High Spatio-Temporal Resolution with VENμS. Remote Sensing, 2020, 12, 3058.	4.0	6
63	VENμS: Mission Characteristics, Final Evaluation of the First Phase and Data Production. Remote Sensing, 2022, 14, 3281.	4.0	6
64	Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS). , 2003, , .		5
65	Multi-temporal remote sensing image segmentation of croplands constrained by a topographical database. , 2012, , .		5
66	Using Sentinel-2 Image Time Series to map the State of Victoria, Australia. , 2019, , .		5
67	The VENμS super-spectral camera. , 2006, , .		4
68	<title>POLDER multiangular calibration using desert sites: method and performances</title> . , 1997, 3221, 141.		3
69	<title>Measurements and computations of polarized marine reflectance</title> ., 2000, 4133, 191.		3
70	Comment on "Comparison of Cloud Cover Detection Algorithms on Sentinel-2 Images of the Amazon Tropical Forest― Remote Sensing, 2021, 13, 1023.	4.0	3
71	A framework for the simulation of high temporal resolution image series. , 2011, , .		2
72	Low and high spatial resolution time series fusion for improved land cover map production. , 2011, , .		2

5

#	Article	IF	CITATIONS
73	The Physics of Optical Remote Sensing. , 2014, , 53-81.		2
74	VENÎ 4 S (Vegetation and Environment Monitoring on a New Micro Satellite). , 2010, , 47-65.		2
75	SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Data, 2022, 7, 96.	2.3	2
76	<title>Results of POLDER in-flight absolute calibration</title> ., 1997, 3221, 122.		1
77	Fusion of multi-temporal high resolution optical image series and crop rotation information for land-cover map production. , 2012, , .		1
78	A Surface Albedo Product at High Spatial Resolution from a Combination of Sentinel-2 and Landsat-8 Observations. , 2018, , .		1
79	Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties?. Remote Sensing, 2021, 13, 3072.	4.0	1
80	RIVERCOLOR : chaîne de traitement des séries temporelles LANDSAT, SPOT et MODIS dédiée à la cartographie des matières en suspension en zone estuarienne. , 2014, , .		1
81	Calibration of the venµs super-spectral camera. , 2017, , .		1
82	VENµS in orbit radiometric calibration. , 2018, , .		1
83	VENμS (vegetation and environment monitoring on a new micro satellite) image quality. , 2007, 6677, 506.		0
84	Observation spatiale à haute resolution spatiale et temporelle : applications pour le suivi de la ressource hydrique en milieu agricole semi-aride. Houille Blanche, 2010, 96, 45-52.	0.3	0
85	Crop mapping by supervised classification of high resolution optical image time series using prior knowledge about crop rotation and topography. , 2013, , .		0
86	TAKE5 experiment jazzes up SPOT5's end of operational life, using it to simulate the new Sentinel-2 mission. , 2016, , .		0
87	Surface wind speed estimation over open ocean using bidirectional observation by Sentinel-2/MSI and Landsat-8/OLI. , 2016, , .		0
88	TAKE5 Experiment Jazzes Up SPOT5's End of Operational Life, Repurposing SPOT5 to Simulate the New Sentinel-2 Mission. , 2017, , 585-613.		0
89	Assessment of the Usefulness of Spectral Bands for the Next Generation of Sentinel-2 Satellites by Reconstruction of Missing Bands. Remote Sensing, 2022, 14, 2503.	4.0	0