TomáÅ; Kot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309840/publications.pdf

Version: 2024-02-01

		1040056	1058476
49	326	9	14
papers	citations	h-index	g-index
53	53	53	272
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation. Sensors, 2022, 22, 1536.	3.8	1
2	Multirepresentations and Multiconstraints Approach to the Numerical Synthesis of Serial Kinematic Structures of Manipulators. IEEE Access, 2022, 10, 68937-68951.	4.2	3
3	Distributed Camera Subsystem for Obstacle Detection. Sensors, 2022, 22, 4588.	3.8	4
4	Matching Point Clouds with STL Models by Using the Principle Component Analysis and a Decomposition into Geometric Primitives. Applied Sciences (Switzerland), 2021, 11, 2268.	2.5	1
5	Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors, 2021, 21, 2890.	3.8	10
6	A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mechanism and Machine Theory, 2021, 158, 104221.	4.5	25
7	Initial Estimation of Kinematic Structure of a Robotic Manipulator as an Input for Its Synthesis. Applied Sciences (Switzerland), 2021, 11, 3548.	2.5	10
8	Chimney Sweeping Robot Based on a Pneumatic Actuator. Applied Sciences (Switzerland), 2021, 11, 4872.	2.5	7
9	Method for Robot Manipulator Joint Wear Reduction by Finding the Optimal Robot Placement in a Robotic Cell. Applied Sciences (Switzerland), 2021, 11, 5398.	2.5	4
10	Using Virtual Scanning to Find Optimal Configuration of a 3D Scanner Turntable for Scanning of Mechanical Parts. Sensors, 2021, 21, 5343.	3.8	6
11	Finding Optimal Manipulator Arm Shapes to Avoid Collisions in a Static Environment. Applied Sciences (Switzerland), 2021, 11, 64.	2.5	7
12	Reduction in Robotic Arm Energy Consumption by Particle Swarm Optimization. Applied Sciences (Switzerland), 2020, 10, 8241.	2.5	10
13	Analysis of Precision and Stability of Hand Tracking with Leap Motion Sensor. Sensors, 2020, 20, 4088.	3.8	20
14	Specific Problems in Measurement of Coefficient of Friction Using Variable Incidence Tribometer. Symmetry, 2020, 12, 1235.	2.2	6
15	Influence of the Approach Direction on the Repeatability of an Industrial Robot. Applied Sciences (Switzerland), 2020, 10, 8714.	2.5	13
16	TESTING OF GLUED JOINTS ON PLASTIC PARTS MANUFACTURED USING FFF TECHNOLOGY. Acta Polytechnica, 2020, 60, .	0.6	0
17	A DEPTH IMAGE QUALITY BENCHMARK OF THREE POPULAR LOW-COST DEPTH CAMERAS. MM Science Journal, 2020, 2020, 4194-4200.	0.4	3
18	Application of virtual reality in teleoperation of the military mobile robotic system TAROS. International Journal of Advanced Robotic Systems, 2018, 15, 172988141775154.	2.1	38

#	Article	IF	CITATIONS
19	The synthesis of a segmented stair-climbing wheel. International Journal of Advanced Robotic Systems, 2018, 15, 172988141774947.	2.1	10
20	Implementation of Explosion Safety Regulations in Design of a Mobile Robot for Coal Mines. Applied Sciences (Switzerland), 2018, 8, 2300.	2.5	14
21	Using HoloLens to create a virtual operator station for mobile robots. , 2018, , .		11
22	Application of Augmented Reality in Mobile Robot Teleoperation. Lecture Notes in Computer Science, 2018, , 223-236.	1.3	4
23	Verification of electronic device technology for measurement and evaluation of thermal exposure of fire fighters and members of rescue teams. Medycyna Pracy, 2018, 69, 1-11.	0.8	1
24	Gripper with precisely adjustable gripping force. , 2017, , .		2
25	Analysis and prevention of selected risks of remotely and autonomously controlled mobile robot TeleRescuer., 2017,,.		2
26	Safety ambient monitor for firefighters. , 2016, , .		1
27	Visualization of point clouds built from 3D scanning in coal mines. , 2016, , .		4
28	Synthesis of action variable for motor controllers of a mobile system with special wheels for movement on stairs. Perspectives in Science, 2016, 7, 329-332.	0.6	4
29	Control system of a mobile robot for coal mines. , 2016, , .		4
30	The 3D laser range finder design for the navigation and mapping for the coal mine robot. , 2016, , .		7
31	Rendering of 3D Maps with Additional Information for Operator of a Coal Mine Mobile Robot. Lecture Notes in Computer Science, 2016, , 214-225.	1.3	3
32	The Design of 3D Laser Range Finder for Robot Navigation and Mapping in Industrial Environment with Point Clouds Preprocessing. Lecture Notes in Computer Science, 2016, , 371-383.	1.3	6
33	Control System of the Mobile Robot TELERESCUER. Applied Mechanics and Materials, 2015, 772, 466-470.	0.2	5
34	Mobile Chassis on a Modular Principle. Applied Mechanics and Materials, 2015, 816, 294-299.	0.2	0
35	Upgrade of the Drives Control for Omnidirectional Mobile Robot Odin. Applied Mechanics and Materials, 2015, 816, 282-287.	0.2	1
36	Sensory Subsystem of a Stair-Climbing Mobile Robot. Applied Mechanics and Materials, 2015, 772, 506-511.	0.2	0

ТомÃiÅi Кот

#	Article	IF	CITATIONS
37	Exploration Mobile Robot for Coal Mines. Lecture Notes in Computer Science, 2015, , 209-215.	1.3	8
38	Testing the Accuracy of the Trajectory Ride for Omnidirectional Mobile Robot Odin. Applied Mechanics and Materials, 2015, 772, 500-505.	0.2	1
39	Virtual Operator Station for Teleoperated Mobile Robots. Lecture Notes in Computer Science, 2015, , 144-153.	1.3	4
40	System for automatic collisions prevention for a manipulator arm of a mobile robot., 2014,,.		5
41	Control system of a mobile robot manipulator. , 2014, , .		10
42	The module for a self-reconfigurable robotic system. , 2014, , .		0
43	Simulation System for Teleoperated Mobile Robots. Lecture Notes in Computer Science, 2014, , 164-172.	1.3	2
44	Stereoscopic System with the Tight Tilted Cameras. Applied Mechanics and Materials, 2013, 332, 154-164.	0.2	1
45	Utilization of the Oculus Rift HMD in Mobile Robot Teleoperation. Applied Mechanics and Materials, 0, 555, 199-208.	0.2	32
46	The Synthesis and Testing of a Shaped Wheel for Stairs Climbing Robot. Applied Mechanics and Materials, 0, 555, 178-185.	0.2	9
47	Special Wheels for Overcoming Stairs. Applied Mechanics and Materials, 0, 811, 268-272.	0.2	1
48	Connecting System for Quick Replacement of Mechatronic SCHUNK Power Cube Modules for Mobile Robotic Systems. Applied Mechanics and Materials, 0, 772, 318-323.	0.2	4
49	Velocity Characteristics of Movement of Chassis with Special Wheels for Overcoming Stairs. Applied Mechanics and Materials, 0, 811, 263-267.	0.2	2