
David Terburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309384/publications.pdf

Version: 2024-02-01

DAVID TERRIDO

#	Article	IF	CITATIONS
1	Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 2012, 36, 65-73.	1.3	324
2	The testosterone–cortisol ratio: A hormonal marker for proneness to social aggression. International Journal of Law and Psychiatry, 2009, 32, 216-223.	0.9	208
3	Testosterone decreases trust in socially naÃ ⁻ ve humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9991-9995.	7.1	196
4	New evidence on testosterone and cooperation. Nature, 2012, 485, E4-E5.	27.8	128
5	Testosterone Affects Gaze Aversion From Angry Faces Outside of Conscious Awareness. Psychological Science, 2012, 23, 459-463.	3.3	119
6	Approach–Avoidance versus Dominance–Submissiveness: A Multilevel Neural Framework on How Testosterone Promotes Social Status. Emotion Review, 2013, 5, 296-302.	3.4	116
7	The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell, 2018, 175, 723-735.e16.	28.9	116
8	Hypervigilance for fear after basolateral amygdala damage in humans. Translational Psychiatry, 2012, 2, e115-e115.	4.8	95
9	Cortisol administration induces global down-regulation of the brain's reward circuitry. Psychoneuroendocrinology, 2014, 47, 31-42.	2.7	87
10	Testosterone administration modulates moral judgments depending on second-to-fourth digit ratio. Psychoneuroendocrinology, 2013, 38, 1362-1369.	2.7	82
11	Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 2015, 10, 1161-1168.	3.0	65
12	Eye Tracking Unconscious Face-to-Face Confrontations. Psychological Science, 2011, 22, 314-319.	3.3	53
13	Acute Effects of Sceletium tortuosum (Zembrin), a Dual 5-HT Reuptake and PDE4 Inhibitor, in the Human Amygdala and its Connection to the Hypothalamus. Neuropsychopharmacology, 2013, 38, 2708-2716.	5.4	52
14	Generous economic investments after basolateral amygdala damage. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2506-2510.	7.1	48
15	The role of human basolateral amygdala in ambiguous social threat perception. Cortex, 2014, 52, 28-34.	2.4	48
16	Reduced fear-recognition sensitivity following acute buprenorphine administration in healthy volunteers. Psychoneuroendocrinology, 2013, 38, 166-170.	2.7	45
17	Single dose testosterone administration alleviates gaze avoidance in women with Social Anxiety Disorder. Psychoneuroendocrinology, 2016, 63, 26-33.	2.7	39
18	Paradoxical Facilitation of Working Memory after Basolateral Amygdala Damage. PLoS ONE, 2012, 7, e38116.	2.5	33

DAVID TERBURG

#	Article	IF	CITATIONS
19	Testosterone abolishes implicit subordination in social anxiety. Psychoneuroendocrinology, 2016, 72, 205-211.	2.7	32
20	The Human Basolateral Amygdala Is Indispensable for Social Experiential Learning. Current Biology, 2019, 29, 3532-3537.e3.	3.9	31
21	Effects of Testosterone Administration on Strategic Gambling in Poker Play. Scientific Reports, 2016, 6, 18096.	3.3	29
22	Further notes on testosterone as a social hormone. Trends in Cognitive Sciences, 2011, 15, 291-2.	7.8	28
23	Memory and attention for social threat: Anxious hypercoding-avoidance and submissive gaze aversion Emotion, 2012, 12, 666-672.	1.8	25
24	Improved memory for reward cues following acute buprenorphine administration in humans. Psychoneuroendocrinology, 2015, 53, 10-15.	2.7	25
25	The role of the basolateral amygdala in the perception of faces in natural contexts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150376.	4.0	24
26	The role of the basolateral amygdala in dreaming. Cortex, 2019, 113, 169-183.	2.4	23
27	Cortisol administration increases hippocampal activation to infant crying in males depending on childhood neglect. Human Brain Mapping, 2014, 35, 5116-5126.	3.6	19
28	Dissociated neural effects of cortisol depending on threat escapability. Human Brain Mapping, 2015, 36, 4304-4316.	3.6	19
29	Parental touch reduces social vigilance in children. Developmental Cognitive Neuroscience, 2019, 35, 87-93.	4.0	19
30	Effects of testosterone administration on threat and escape anticipation in the orbitofrontal cortex. Psychoneuroendocrinology, 2018, 96, 42-51.	2.7	17
31	Trait Dominance Promotes Reflexive Staring at Masked Angry Body Postures. PLoS ONE, 2014, 9, e116232.	2.5	16
32	The Basolateral Amygdalae and Frontotemporal Network Functions for Threat Perception. ENeuro, 2017, 4, ENEURO.0314-16.2016.	1.9	15
33	Neuroendocrine models of social anxiety disorder. Dialogues in Clinical Neuroscience, 2015, 17, 287-293.	3.7	15
34	Testosterone and Dominance in Humans: Behavioral and Brain Mechanisms. Research and Perspectives in Neurosciences, 2014, , 201-214.	0.4	14
35	A mu-opioid feedback model of human social behavior. Neuroscience and Biobehavioral Reviews, 2021, 121, 250-258.	6.1	14
36	Proximity alert! Distance related cuneus activation in military veterans with anger and aggression problems. Psychiatry Research - Neuroimaging, 2017, 266, 114-122.	1.8	11

DAVID TERBURG

#	Article	IF	CITATIONS
37	Unzipping empathy in psychopathy: Empathy and facial affect processing in psychopaths. Neuroscience and Biobehavioral Reviews, 2021, 131, 1116-1126.	6.1	11
38	Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 419-432.	1.8	10
39	Coalescence of dominance motivation and responses to facial anger in resting-state and event-related electrophysiology. NeuroImage, 2013, 79, 138-144.	4.2	9
40	The dynamic consequences of amygdala damage on threat processing in Urbach–Wiethe Disease. AÂcommentary on Pishnamazi etAal. (2016). Cortex, 2017, 88, 192-197.	2.4	8
41	Neural responses in the pain matrix when observing pain of others are unaffected by testosterone administration in women. Experimental Brain Research, 2020, 238, 751-759.	1.5	5
42	Oxytocin enhances basolateral amygdala activation and functional connectivity while processing emotional faces: preliminary findings in autistic <i>vs</i> non-autistic women. Social Cognitive and Affective Neuroscience, 2022, 17, 929-938.	3.0	5
43	Sex differences in human aggression: The interaction between early developmental and later activational testosterone. Behavioral and Brain Sciences, 2009, 32, 290-290.	0.7	4
44	In the Eye of the Beholder: Reduced Threat-Bias and Increased Gaze-Imitation towards Reward in Relation to Trait Anger. PLoS ONE, 2012, 7, e31373.	2.5	3
45	Cognition as the tip of the emotional iceberg: A neuro-evolutionary perspective. Behavioral and Brain Sciences, 2015, 38, e72.	0.7	1
46	Sniffing submissiveness? Oxytocin administration in severe psychopathy. Psychoneuroendocrinology, 2021, 131, 105330.	2.7	1
47	Steroid hormones and severity of psychopathy in forensic patients Motivation Science, 2022, 8, 121-132.	1.6	1