Meiyappan Lakshmanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8309132/publications.pdf

Version: 2024-02-01

42 papers

2,265 citations

³⁶¹⁴¹³
20
h-index

254184 43 g-index

51 all docs

51 docs citations

51 times ranked

3321 citing authors

#	Article	lF	CITATIONS
1	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	17.5	314
2	Recon 2.2: from reconstruction to model of human metabolism. Metabolomics, 2016, 12, 109.	3.0	243
3	A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Systems, 2016, 3, 434-443.e8.	6.2	205
4	Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice, $2013, 6, 1$.	4.0	186
5	Genome and evolution of the shadeâ€requiring medicinal herb <i>Panax ginseng</i> . Plant Biotechnology Journal, 2018, 16, 1904-1917.	8.3	136
6	Software applications for flux balance analysis. Briefings in Bioinformatics, 2014, 15, 108-122.	6.5	94
7	Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. Cell Systems, 2017, 4, 530-542.e6.	6.2	84
8	Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biology, 2018, 18, 62.	3.6	73
9	Elucidating Rice Cell Metabolism under Flooding and Drought Stresses Using Flux-Based Modeling and Analysis. Plant Physiology, 2013, 162, 2140-2150.	4.8	69
10	Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multi-omics analysis. Plant Physiology, 2015, 169, pp.01379.2015.	4.8	68
11	Kinetic Modeling of Mammalian Cell Culture Bioprocessing: The Quest to Advance Biomanufacturing. Biotechnology Journal, 2018, 13, e1700229.	3.5	63
12	Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Systems Biology, 2018, 12, 12.	3.0	58
13	Genomeâ€scale metabolic modeling and in silico analysis of lipid accumulating yeast <i>Candida tropicalis</i> for dicarboxylic acid production. Biotechnology and Bioengineering, 2016, 113, 1993-2004.	3.3	55
14	Enzyme capacity-based genome scale modelling of CHO cells. Metabolic Engineering, 2020, 60, 138-147.	7.0	51
15	Towards next generation CHO cell line development and engineering by systems approaches. Current Opinion in Chemical Engineering, 2018, 22, 1-10.	7.8	43
16	Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network. Plant Science, 2016, 242, 224-239.	3.6	39
17	Transcriptomicsâ€based strain optimization tool for designing secondary metabolite overproducing strains of <i>Streptomyces coelicolor</i>). Biotechnology and Bioengineering, 2016, 113, 651-660.	3.3	38
18	Multiâ€omics profiling of CHO parental hosts reveals cell lineâ€specific variations in bioprocessing traits. Biotechnology and Bioengineering, 2019, 116, 2117-2129.	3.3	38

#	Article	IF	Citations
19	Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Scientific Reports, 2017, 7, 15721.	3.3	33
20	Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Current Genomics, 2018, 19, 712-722.	1.6	28
21	Genome-scale in silico modeling and analysis for designing synthetic terpenoid-producing microbial cell factories. Chemical Engineering Science, 2013, 103, 100-108.	3.8	22
22	Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves. Plant Signaling and Behavior, 2016, 11, e1184808.	2.4	22
23	Harnessing the potential of machine learning for advancing "Quality by Design―in biomanufacturing. MAbs, 2022, 14, 2013593.	5.2	21
24	Modeling Rice Metabolism: From Elucidating Environmental Effects on Cellular Phenotype to Guiding Crop Improvement. Frontiers in Plant Science, 2016, 7, 1795.	3.6	18
25	Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. Microbial Cell Factories, 2014, 13, 61.	4.0	17
26	Comparative phenotypic analysis of CHO clones and culture media for lactate shift. Journal of Biotechnology, 2018, 283, 97-104.	3.8	17
27	COFACTOR MODIFICATION ANALYSIS: A COMPUTATIONAL FRAMEWORK TO IDENTIFY COFACTOR SPECIFICITY ENGINEERING TARGETS FOR STRAIN IMPROVEMENT. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343006.	0.8	16
28	Flux-sum analysis identifies metabolite targets for strain improvement. BMC Systems Biology, 2015, 9, 73.	3.0	15
29	Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. MSystems, 2021, 6, e0059921.	3.8	15
30	Metabolic reconstruction and flux analysis of industrial Pichia yeasts. Applied Microbiology and Biotechnology, 2013, 97, 1865-1873.	3.6	13
31	In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1401-1414.	3.0	12
32	Oral microbiome-systemic link studies: perspectives on current limitations and future artificial intelligence-based approaches. Critical Reviews in Microbiology, 2020, 46, 288-299.	6.1	12
33	Identifying essential genes/reactions of the rice photorespiration by in silico model-based analysis. Rice, 2013, 6, 20.	4.0	11
34	Genomeâ€scale metabolic reconstruction and in silico analysis of theÂrice leaf blight pathogen, <i>Xanthomonas oryzae</i> . Molecular Plant Pathology, 2020, 21, 527-540.	4.2	11
35	Multiâ€omics profiling of a CHO cell culture system unravels the effect of culture pH on cell growth, antibody titer, and product quality. Biotechnology and Bioengineering, 2021, 118, 4305-4316.	3.3	11
36	In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microbial Cell Factories, 2018, 17, 167.	4.0	10

3

#	Article	IF	CITATIONS
37	In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Journal of Biotechnology, 2020, 308, 10-20.	3.8	10
38	Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile. AoB PLANTS, 2014, 6 , .	2.3	9
39	Combined multivariate statistical and flux balance analyses uncover media bottlenecks to the growth and productivity of Chinese hamster ovary cell cultures. Biotechnology and Bioengineering, 2022, 119, 1740-1754.	3.3	7
40	A genetic algorithm-based approach for pre-processing metabolomics and lipidomics LCâ \in "MS data. Metabolomics, 2016, 12, 1.	3.0	4
41	Integrative metabolomic analysis reveals diet supplementation with green tea alleviates UVB-damaged mouse skin correlated with ascorbate metabolism and urea cycle. Metabolomics, 2017, 13, 1.	3.0	3
42	Systems Biology of Gut Microbiota-Human Receptor Interactions: Toward Anti-inflammatory Probiotics. Frontiers in Microbiology, 2022, 13, 846555.	3.5	3