Jin-Tang Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8305884/publications.pdf Version: 2024-02-01

		57758	82547
117	5,911	44	72
papers	citations	h-index	g-index
117	117	117	7464
all docs	docs citations	times ranked	citing authors

IN-TANC DONC

#	Article	IF	CITATIONS
1	AR imposes different effects on <i>ZFHX3</i> transcription depending on androgen status in prostate cancer cells. Journal of Cellular and Molecular Medicine, 2022, 26, 800-812.	3.6	3
2	Establishment of a IncRNA-Based Prognostic Gene Signature Associated With Altered Immune Responses in HCC. Frontiers in Immunology, 2022, 13, 880288.	4.8	9
3	Novel Gene Signatures Predictive of Patient Recurrence-Free Survival and Castration Resistance in Prostate Cancer. Cancers, 2021, 13, 917.	3.7	20
4	Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nature Communications, 2021, 12, 1714.	12.8	70
5	The Cardiac Glycoside Deslanoside Exerts Anticancer Activity in Prostate Cancer Cells by Modulating Multiple Signaling Pathways. Cancers, 2021, 13, 5809.	3.7	12
6	Measurement of Bone Metastatic Tumor Growth by a Tibial Tumorigenesis Assay. Bio-protocol, 2021, 11, e4231.	0.4	0
7	Interruption of Klf5 acetylation in basal progenitor cells promotes luminal commitment by activating Notch signaling. Journal of Genetics and Genomics, 2021, , .	3.9	1
8	TGF-Î ² causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Theranostics, 2020, 10, 7656-7670.	10.0	34
9	ZFHX3 Promotes the Proliferation and Tumor Growth of ER-Positive Breast Cancer Cells Likely by Enhancing Stem-Like Features and MYC and TBX3 Transcription. Cancers, 2020, 12, 3415.	3.7	13
10	KLF5 Is Crucial for Androgen-AR Signaling to Transactivate Genes and Promote Cell Proliferation in Prostate Cancer Cells. Cancers, 2020, 12, 748.	3.7	14
11	Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nature Communications, 2020, 11, 997.	12.8	25
12	SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation. Journal of Biological Chemistry, 2020, 295, 6741-6753.	3.4	19
13	The transcription factor ZFHX3 is crucial for the angiogenic function of hypoxia-inducible factor 1α in liver cancer cells. Journal of Biological Chemistry, 2020, 295, 7060-7074.	3.4	15
14	Ras inhibits TGFâ€Î²â€induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. Journal of Cellular Biochemistry, 2020, 121, 2197-2208.	2.6	13
15	Transcription factor ZFHX3 regulates calcium influx in mammary epithelial cells in part via the TRPV6 calcium channel. Biochemical and Biophysical Research Communications, 2019, 519, 366-371.	2.1	6
16	ZFHX3 is indispensable for ERÎ ² to inhibit cell proliferation via MYC downregulation in prostate cancer cells. Oncogenesis, 2019, 8, 28.	4.9	42
17	Zfhx3 is essential for progesterone/progesterone receptor signaling to drive ductal side-branching and alveologenesis in mouse mammary glands. Journal of Genetics and Genomics, 2019, 46, 119-131.	3.9	12
18	Sox7 negatively regulates prostateâ€specific membrane antigen (PSMA) expression through PSMAâ€enhancer. Prostate. 2019. 79. 370-378.	2.3	11

#	Article	IF	CITATIONS
19	CINP is a novel cofactor of KLF5 required for its role in the promotion of cell proliferation, survival and tumor growth. International Journal of Cancer, 2019, 144, 582-594.	5.1	17
20	HDAC-mediated deacetylation of KLF5 associates with its proteasomal degradation. Biochemical and Biophysical Research Communications, 2018, 500, 777-782.	2.1	20
21	The mi <scp>R</scp> â€203/ <scp>SNAI</scp> 2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating <scp>CSK</scp> â€3 <i>β</i> Ͳí>ã€ <scp>CATENIN</scp> signal pathway. IUBMB Life, 2018, 70, 224-236.	3.4	31
22	Upregulation of Long Non-Coding RNA DRAIC Correlates with Adverse Features of Breast Cancer. Non-coding RNA, 2018, 4, 39.	2.6	23
23	ZNF121 interacts with ZBRK1 and BRCA1 to regulate their target genes in mammary epithelial cells. FEBS Open Bio, 2018, 8, 1943-1952.	2.3	10
24	LEM4 confers tamoxifen resistance to breast cancer cells by activating cyclin D-CDK4/6-Rb and ERα pathway. Nature Communications, 2018, 9, 4180.	12.8	47
25	TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis, 2018, 7, 69.	4.9	57
26	Prevention of Dietary-Fat-Fueled Ketogenesis Attenuates BRAF V600E Tumor Growth. Cell Metabolism, 2017, 25, 358-373.	16.2	109
27	<i>ERRF</i> sensitizes ERBB2-positive breast cancer cells to lapatinib treatment likely by attenuating MCL1 and ERBB2 expression. Oncotarget, 2017, 8, 36054-36066.	1.8	5
28	Micro RNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget, 2016, 7, 5702-5714.	1.8	67
29	Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity. Journal of Biological Chemistry, 2016, 291, 12809-12820.	3.4	28
30	Estrogen-estrogen receptor signaling suppresses the transcription of ERRF in breast cancer cells. Journal of Genetics and Genomics, 2016, 43, 565-567.	3.9	4
31	Zinc finger factor ZNF121 is a MYC-interacting protein functionally affecting MYC and cell proliferation in epithelial cells. Journal of Genetics and Genomics, 2016, 43, 677-685.	3.9	12
32	Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells. International Journal of Cancer, 2015, 136, 536-546.	5.1	41
33	KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF11± accumulation. Molecular Cancer, 2015, 14, 91.	19.2	33
34	Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Seminars in Cancer Biology, 2015, 35, S55-S77.	9.6	95
35	Additive Effect of Zfhx3/Atbf1 and Pten Deletion on Mouse Prostatic Tumorigenesis. Journal of Genetics and Genomics, 2015, 42, 373-382.	3.9	19
36	Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumor Biology, 2015, 36, 4763-4771.	1.8	59

#	Article	IF	CITATIONS
37	Characterization of Nuclear Localization and SUMOylation of the ATBF1 Transcription Factor in Epithelial Cells. PLoS ONE, 2014, 9, e92746.	2.5	19
38	Klf5 Deletion Promotes Pten Deletion–Initiated Luminal-Type Mouse Prostate Tumors through Multiple Oncogenic Signaling Pathways. Neoplasia, 2014, 16, 883-899.	5.3	26
39	TGF- <i>β</i> Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the <i>α</i> -Fetoprotein Promoter. Journal of Signal Transduction, 2014, 2014, 1-11.	2.0	8
40	Deletion of Atbf1/Zfhx3 In Mouse Prostate Causes Neoplastic Lesions, Likely by Attenuation of Membrane and Secretory Proteins and Multiple Signaling Pathways. Neoplasia, 2014, 16, 377-389.	5.3	31
41	Frequent Mutation of rs13281615 and Its Association with PVT1 Expression and Cell Proliferation in Breast Cancer. Journal of Genetics and Genomics, 2014, 41, 187-195.	3.9	31
42	Interruption of nuclear localization of ATBF1 during the histopathologic progression of head and neck squamous cell carcinoma. Head and Neck, 2013, 35, 1007-1014.	2.0	9
43	KLF5 Activates MicroRNA 200 Transcription To Maintain Epithelial Characteristics and Prevent Induced Epithelial-Mesenchymal Transition in Epithelial Cells. Molecular and Cellular Biology, 2013, 33, 4919-4935.	2.3	73
44	Lack of an Additive Effect between the Deletions of Klf5 and Nkx3-1 in Mouse Prostatic Tumorigenesis. Journal of Genetics and Genomics, 2013, 40, 315-318.	3.9	2
45	Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochemical and Biophysical Research Communications, 2013, 430, 358-363.	2.1	27
46	Anticancer Activities of PPARÎ ³ in Breast Cancer Are Context-Dependent. American Journal of Pathology, 2013, 182, 1972-1975.	3.8	14
47	Role of KLF5 in Hormonal Signaling and Breast Cancer Development. Vitamins and Hormones, 2013, 93, 213-225.	1.7	16
48	Transforming Growth Factor β Inhibits Platelet Derived Growth Factor-Induced Vascular Smooth Muscle Cell Proliferation via Akt-Independent, Smad-Mediated Cyclin D1 Downregulation. PLoS ONE, 2013, 8, e79657.	2.5	32
49	Different Expression Patterns and Functions of Acetylated and Unacetylated Klf5 in the Proliferation and Differentiation of Prostatic Epithelial Cells. PLoS ONE, 2013, 8, e65538.	2.5	22
50	Oestrogen causes ATBF1 protein degradation through the oestrogen-responsive E3 ubiquitin ligase EFP. Biochemical Journal, 2012, 444, 581-590.	3.7	32
51	Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer. Breast Cancer Research, 2012, 14, R73.	5.0	43
52	Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells. American Journal of Pathology, 2012, 180, 1189-1201.	3.8	20
53	Atbf1 Regulates Pubertal Mammary Gland Development Likely by Inhibiting the Pro-Proliferative Function of Estrogen-ER Signaling. PLoS ONE, 2012, 7, e51283.	2.5	22
54	Heterozygous deletion of <i>Atbf1</i> by the <i>Creâ€loxP</i> system in mice causes preweaning mortality. Genesis, 2012, 50, 819-827.	1.6	40

#	Article	IF	CITATIONS
55	Oestrogen causes degradation of KLF5 by inducing the E3 ubiquitin ligase EFP in ER-positive breast cancer cells. Biochemical Journal, 2011, 437, 323-333.	3.7	39
56	Somatic Mutations of the Mixed-Lineage Leukemia 3 (MLL3) Gene in Primary Breast Cancers. Pathology and Oncology Research, 2011, 17, 429-433.	1.9	51
57	Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells. Genes and Cancer, 2011, 2, 782-791.	1.9	156
58	Estrogen Up-regulates ATBF1 Transcription but Causes Its Protein Degradation in Estrogen Receptor-α-positive Breast Cancer Cells. Journal of Biological Chemistry, 2011, 286, 13879-13890.	3.4	28
59	Estrogenâ€induced interaction between KLF5 and estrogen receptor (ER) suppresses the function of ER in ERâ€positive breast cancer cells. International Journal of Cancer, 2010, 126, 81-89.	5.1	30
60	ATBF1 Inhibits Estrogen Receptor (ER) Function by Selectively Competing with AIB1 for Binding to the ER in ER-positive Breast Cancer Cells*. Journal of Biological Chemistry, 2010, 285, 32801-32809.	3.4	45
61	Pro-proliferative Factor KLF5 Becomes Anti-proliferative in Epithelial Homeostasis upon Signaling-mediated Modification. Journal of Biological Chemistry, 2009, 284, 6071-6078.	3.4	69
62	KLF5 Promotes Breast Cell Survival Partially through Fibroblast Growth Factor-binding Protein 1-pERK-mediated Dual Specificity MKP-1 Protein Phosphorylation and Stabilization. Journal of Biological Chemistry, 2009, 284, 16791-16798.	3.4	75
63	Suppression of Anoikis by <i>SKP2</i> Amplification and Overexpression Promotes Metastasis of Esophageal Squamous Cell Carcinoma. Molecular Cancer Research, 2009, 7, 12-22.	3.4	47
64	Opposing Effects of KLF5 on the Transcription of MYC in Epithelial Proliferation in the Context of Transforming Growth Factor β. Journal of Biological Chemistry, 2009, 284, 28243-28252.	3.4	44
65	Acetylation of KLF5 Alters the Assembly of p15 Transcription Factors in Transforming Growth Factor-β-mediated Induction in Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 18184-18193.	3.4	66
66	Down-regulation of tumor suppressor gene FEZ1/LZTS1 in breast carcinoma involves promoter methylation and associates with metastasis. Breast Cancer Research and Treatment, 2009, 116, 471-478.	2.5	32
67	Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cellular and Molecular Life Sciences, 2009, 66, 2691-2706.	5.4	234
68	Implication of snoRNA U50 in human breast cancer. Journal of Genetics and Genomics, 2009, 36, 447-454.	3.9	172
69	Molecular analysis in combination with iodine staining may contribute to the risk prediction of esophageal squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2008, 134, 307-315.	2.5	11
70	Amplification of <i>PRKCI</i> , located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma. Genes Chromosomes and Cancer, 2008, 47, 127-136.	2.8	71
71	Small-molecule inhibition of Aurora kinases triggers spindle checkpoint-independent apoptosis in cancer cells. Biochemical Pharmacology, 2008, 75, 1027-1034.	4.4	16
72	The Tumor Suppressor CYLD Regulates Microtubule Dynamics and Plays a Role in Cell Migration. Journal of Biological Chemistry, 2008, 283, 8802-8809.	3.4	113

#	Article	IF	CITATIONS
73	Sox7 Is an Independent Checkpoint for β-Catenin Function in Prostate and Colon Epithelial Cells. Molecular Cancer Research, 2008, 6, 1421-1430.	3.4	81
74	Parkin Regulates Eg5 Expression by Hsp70 Ubiquitination-dependent Inactivation of c-Jun NH2-terminal Kinase. Journal of Biological Chemistry, 2008, 283, 35783-35788.	3.4	34
75	EB1 promotes Aurora-B kinase activity through blocking its inactivation by protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7153-7158.	7.1	84
76	SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Human Molecular Genetics, 2007, 17, 1031-1042.	2.9	170
77	Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent pathway. FEBS Letters, 2007, 581, 1124-1130.	2.8	35
78	The amplifiedWWP1 gene is a potential molecular target in breast cancer. International Journal of Cancer, 2007, 121, 80-87.	5.1	119
79	Microsatellite instability and mismatch repair target gene mutations in cell lines and xenografts of prostate cancer. Prostate, 2006, 66, 660-666.	2.3	19
80	Infrequent mutation of ATBF1 in human breast cancer. Journal of Cancer Research and Clinical Oncology, 2006, 133, 103-105.	2.5	29
81	Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 2006, 170, 102-107.	1.0	10
82	Prevalent mutations in prostate cancer. Journal of Cellular Biochemistry, 2006, 97, 433-447.	2.6	185
83	KLF5 promotes cell proliferation and tumorigenesis through gene regulationin the TSU-Pr1 human bladder cancer cell line. International Journal of Cancer, 2006, 118, 1346-1355.	5.1	136
84	Homozygous deletion of SMAD4 in breast cancer cell lines and invasive ductal carcinomas. Cancer Biology and Therapy, 2006, 5, 601-607.	3.4	33
85	Inhibition of the Mitotic Kinesin Eg5 Up-regulates Hsp70 through the Phosphatidylinositol 3-Kinase/Akt Pathway in Multiple Myeloma Cells. Journal of Biological Chemistry, 2006, 281, 18090-18097.	3.4	44
86	FOXO1A Is a Candidate for the 13q14 Tumor Suppressor Gene Inhibiting Androgen Receptor Signaling in Prostate Cancer. Cancer Research, 2006, 66, 6998-7006.	0.9	124
87	KLF5 Interacts with p53 in Regulating Survivin Expression in Acute Lymphoblastic Leukemia. Journal of Biological Chemistry, 2006, 281, 14711-14718.	3.4	101
88	Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nature Genetics, 2005, 37, 407-412.	21.4	156
89	Ubiquitin–proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene, 2005, 24, 3319-3327.	5.9	128
90	Human Kruppel-like Factor 5 Is a Target of the E3 Ubiquitin Ligase WWP1 for Proteolysis in Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 41553-41561.	3.4	127

#	Article	IF	CITATIONS
91	A novel region of deletion on 13q33-q34 in esophageal squamous cell carcinoma. Oncology Reports, 2005, 14, 1639-46.	2.6	0
92	PrLZ, a Novel Prostate-Specific and Androgen-Responsive Gene of the TPD52 Family, Amplified in Chromosome 8q21.1 and Overexpressed in Human Prostate Cancer. Cancer Research, 2004, 64, 1589-1594.	0.9	94
93	Absence ofKLF6 gene mutations in human astrocytic tumors and cell lines. International Journal of Cancer, 2004, 111, 642-643.	5.1	30
94	Regulation of KLF5 involves the Sp1 transcription factor in human epithelial cells. Gene, 2004, 330, 133-142.	2.2	36
95	<i>KLF5</i> is frequently deleted and downâ€regulated but rarely mutated in prostate cancer. Prostate, 2003, 55, 81-88.	2.3	125
96	Defining regulatory elements in the humanKAI1 (CD 82) metastasis suppressor gene. Prostate, 2003, 57, 256-260.	2.3	16
97	Deletion, Mutation, and Loss of Expression of KLF6 in Human Prostate Cancer. American Journal of Pathology, 2003, 162, 1349-1354.	3.8	137
98	KAl1 metastasis suppressor protein is down-regulated during the progression of human endometrial cancer. Clinical Cancer Research, 2003, 9, 1393-8.	7.0	27
99	Chromosomal deletions and tumor suppressor genes in prostate cancer. , 2002, , 37-57.		0
100	KAl1 Metastasis Suppressor Protein in Cervical Cancer. American Journal of Pathology, 2002, 160, 1542-1543.	3.8	5
101	Defining the region(s) of deletion at 6q16-q22 in human prostate cancer. Genes Chromosomes and Cancer, 2002, 34, 306-312.	2.8	47
102	A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene, 2002, 21, 6567-6572.	5.9	135
103	An 800-kb Region of Deletion at 13q14 in Human Prostate and Other Carcinomas. Genomics, 2001, 77, 135-144.	2.9	29
104	KAl1 Metastasis Suppressor Gene Is Frequently Down-Regulated in Cervical Carcinoma. American Journal of Pathology, 2001, 159, 1629-1634.	3.8	45
105	Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate, 2001, 49, 166-171.	2.3	111
106	Defining a common region of deletion at 13q21 in human cancers. Genes Chromosomes and Cancer, 2001, 31, 333-344.	2.8	33
107	Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer and Metastasis Reviews, 2001, 20, 173-193.	5.9	174
108	Frequent Down-Regulation and Lack of Mutation of the KAI1 Metastasis Suppressor Gene in Epithelial Ovarian Carcinoma. Gynecologic Oncology, 2000, 78, 10-15.	1.4	57

#	Article	IF	CITATIONS
109	Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer. Genes Chromosomes and Cancer, 1999, 25, 108-114.	2.8	84
110	Loss of heterozygosity and lack of mutations of theXPG/ERCC5 DNA repair gene at 13q33 in prostate cancer. , 1999, 41, 190-195.		15
111	PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene, 1998, 17, 1979-1982.	5.9	80
112	Identification of the rat homologue ofKAI1 and its expression in dunning rat prostate cancers. , 1998, 37, 253-260.		11
113	Molecular advances in prostate cancer. Current Opinion in Oncology, 1997, 9, 101-107.	2.4	71
114	Genomic Organization of the HumanKAI1Metastasis-Suppressor Gene. Genomics, 1997, 41, 25-32.	2.9	62
115	Location of KAI1 on the short arm of human chromosome 11 and frequency of allelic loss in advanced human prostate cancer. , 1997, 32, 205-213.		58
116	Suppression of tumorigenicity of A549 lung adenocarcinoma cells by human chromosomes 3 and 11 introduced via microcell-mediated chromosome transfer. Molecular Carcinogenesis, 1993, 7, 157-164.	2.7	45
117	Growth and transformation suppressor genes for BHK syrian hamster cells on human chromosomes 1 and 11. Molecular Carcinogenesis, 1992, 6, 280-288.	2.7	7