Donald S. Backos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/830569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood, 2022, 139, 584-596.	1.4	51
2	Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice. Journal of Biological Chemistry, 2022, 298, 101723.	3.4	5
3	Multifunctional role of thymidine phosphorylase in cancer. Trends in Cancer, 2022, 8, 482-493.	7.4	4
4	A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 811430.	4.8	8
5	Auriculocondylar syndrome 2 results from the dominant-negative action of <i>PLCB4</i> variants. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	6
6	Statin therapy inhibits fatty acid synthase via dynamic protein modifications. Nature Communications, 2022, 13, 2542.	12.8	7
7	Maneb alters central carbon metabolism and thiol redox status in a toxicant model of Parkinson's disease. Free Radical Biology and Medicine, 2021, 162, 65-76.	2.9	22
8	Inhibition of BRAF and ERK1/2 has synergistic effects on thyroid cancer growth <i>in vitro</i> and <i>in vivo</i> . Molecular Carcinogenesis, 2021, 60, 201-212.	2.7	15
9	Persistent, Progressive Pulmonary Fibrosis and Epithelial Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 669-676.	2.9	39
10	Maneb adducts human peroxiredoxin 3 through thiol interactions. Advances in Redox Research, 2021, 2, 100008.	2.1	0
11	N-Substituted pyrrolopyrimidines and purines as p90 ribosomal S6 protein kinase-2 (RSK2) inhibitors. Bioorganic and Medicinal Chemistry, 2021, 41, 116220.	3.0	5
12	Evaluation of Thymidine Phosphorylase Inhibitors in Glioblastoma and Their Capacity for Temozolomide Potentiation. ACS Chemical Neuroscience, 2021, 12, 3477-3486.	3.5	2
13	Substituted pteridinones, pyrimidines, pyrrolopyrimidines, and purines as p90 ribosomal S6 protein kinase-2 (RSK2) inhibitors: Pharmacophore modeling data. Data in Brief, 2021, 38, 107433.	1.0	0
14	Substituted pteridinones as p90 ribosomal S6 protein kinase (RSK) inhibitors: A structure-activity study. Bioorganic and Medicinal Chemistry, 2020, 28, 115303.	3.0	11
15	10-N-heterocylic aryl-isoxazole-amides (AIMs) have robust anti-tumor activity against breast and brain cancer cell lines and useful fluorescence properties. Bioorganic and Medicinal Chemistry, 2020, 28, 115781.	3.0	7
16	Genetic Variants of Lipoprotein Lipase and Regulatory Factors Associated with Alzheimer's Disease Risk. International Journal of Molecular Sciences, 2020, 21, 8338.	4.1	13
17	Computational Modeling of NLRP3 Identifies Enhanced ATP Binding and Multimerization in Cryopyrin-Associated Periodic Syndromes. Frontiers in Immunology, 2020, 11, 584364.	4.8	9
18	Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets. Data in Brief, 2020, 29, 105347.	1.0	22

#	Article	IF	CITATIONS
19	4â€Hydroxyâ€2â€nonenal attenuates 8â€oxoguanine DNA glycosylase 1 activity. Journal of Cellular Biochemistry, 2020, 121, 4887-4897.	2.6	10
20	Characterization and Optimization of the Novel Transient Receptor Potential Melastatin 2 Antagonist tatM2NX. Molecular Pharmacology, 2020, 97, 102-111.	2.3	11
21	Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. European Journal of Medicinal Chemistry, 2020, 197, 112316.	5.5	13
22	Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. Journal of Controlled Release, 2019, 302, 181-189.	9.9	24
23	Establishment and Characterization of Four Novel Thyroid Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E, or RASQ61R as Drivers. Molecular Cancer Research, 2019, 17, 1036-1048.	3.4	10
24	Developing selective L-Amino Acid Transport 1 (LAT1) inhibitors: A Structure-Activity Relationship overview. Medical Research Archives, 2019, 7, .	0.2	4
25	The Nurr1 Ligand,1,1-bis(3′-Indolyl)-1-(<i>p</i> -Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 636-651.	2.5	34
26	Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 800-811.	2.3	28
27	Development of Potent Pyrazolopyrimidinoneâ€Based WEE1 Inhibitors with Limited Singleâ€Agent Cytotoxicity for Cancer Therapy. ChemMedChem, 2018, 13, 1681-1694.	3.2	11
28	Isoxazolo[3,4-d]pyridazinones positively modulate the metabotropic glutamate subtypes 2 and 4. Bioorganic and Medicinal Chemistry, 2018, 26, 4797-4803.	3.0	2
29	Compensatory Expression of Nur77 and Nurr1 Regulates NF- <i>κ</i> B–Dependent Inflammatory Signaling in Astrocytes. Molecular Pharmacology, 2018, 94, 1174-1186.	2.3	40
30	Redox modulation of NQO1. PLoS ONE, 2018, 13, e0190717.	2.5	31
31	Redox Modulation of NQO1. FASEB Journal, 2018, 32, .	0.5	0
32	Characterizing Sirtuin 3 Deacetylase Affinity for Aldehyde Dehydrogenase 2. Chemical Research in Toxicology, 2017, 30, 785-793.	3.3	12
33	Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter. Bioorganic and Medicinal Chemistry, 2017, 25, 3223-3234.	3.0	13
34	Selective Targeting of RSK Isoforms in Cancer. Trends in Cancer, 2017, 3, 302-312.	7.4	52
35	SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metabolism, 2017, 25, 838-855.e15.	16.2	259
36	A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metabolism, 2017, 25, 823-837.e8.	16.2	205

#	Article	IF	CITATIONS
37	Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nature Nanotechnology, 2017, 12, 387-393.	31.5	411
38	524 SASH1 is a novel gene involved in human pigmentation disorders. Journal of Investigative Dermatology, 2017, 137, S90.	0.7	0
39	Novel Molecule Exhibiting Selective Affinity for GABAA Receptor Subtypes. Scientific Reports, 2017, 7, 6230.	3.3	8
40	Chronic Ethanol Metabolism Inhibits Hepatic Mitochondrial Superoxide Dismutase via Lysine Acetylation. Alcoholism: Clinical and Experimental Research, 2017, 41, 1705-1714.	2.4	24
41	Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors. Oncotarget, 2016, 7, 77998-78008.	1.8	18
42	Targeting WEE1 Kinase in Cancer. Trends in Pharmacological Sciences, 2016, 37, 872-881.	8.7	294
43	407 Mutation in SASH1 causes human skin hyperpigmentation. Journal of Investigative Dermatology, 2016, 136, S72.	0.7	0
44	Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chemical Biology, 2016, 11, 308-318.	3.4	297
45	Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Journal of Biological Chemistry, 2016, 291, 7128-7141.	3.4	91
46	A WEE1 Inhibitor Analog of AZD1775 Maintains Synergy with Cisplatin and Demonstrates Reduced Single-Agent Cytotoxicity in Medulloblastoma Cells. ACS Chemical Biology, 2016, 11, 921-930.	3.4	42
47	Structure-Based Screen Identification of a Mammalian Ste20-like Kinase 4 (MST4) Inhibitor with Therapeutic Potential for Pituitary Tumors. Molecular Cancer Therapeutics, 2016, 15, 412-420.	4.1	16
48	Deacetylation by SIRT3 Relieves Inhibition of Mitochondrial Protein Function. , 2016, , 105-138.		3
49	A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization. PLoS ONE, 2016, 11, e0158269.	2.5	8
50	RSK3: A regulator of pathological cardiac remodeling. IUBMB Life, 2015, 67, 331-337.	3.4	16
51	ROCK and Rho. American Journal of Pathology, 2015, 185, 909-912.	3.8	17
52	AlMing towards improved antitumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1765-1770.	2.2	8
53	Abstract LB-303: Identification of a mammalian sterile-20 like kinase 4 (MST4) inhibitor to target pituitary tumorigenesis. , 2015, , .		0
54	Abstract C195: A Wee1 inhibitor analog of AZD1775 demonstrates synergy with cisplatin with reduced single-agent toxicity in medulloblastoma. , 2015, , .		0

#	Article	IF	CITATIONS
55	Identification of 5′ AMP-activated Kinase as a Target of Reactive Aldehydes during Chronic Ingestion of High Concentrations of Ethanol. Journal of Biological Chemistry, 2014, 289, 15449-15462.	3.4	50
56	Diindolylmethane Analogs Bind NR4A1 and Are NR4A1 Antagonists in Colon Cancer Cells. Molecular Endocrinology, 2014, 28, 1729-1739.	3.7	79
57	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
58	19-Substituted Benzoquinone Ansamycin Heat Shock Protein-90 Inhibitors: Biological Activity and Decreased Off-Target Toxicity. Molecular Pharmacology, 2014, 85, 849-857.	2.3	17
59	Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Molecular Cancer, 2014, 13, 72.	19.2	62
60	Allosteric Inhibitors of the Eya2 Phosphatase Are Selective and Inhibit Eya2-mediated Cell Migration. Journal of Biological Chemistry, 2014, 289, 16349-16361.	3.4	46
61	Oxidative stress-mediated aldehyde adduction of GRP78 in a mouse model of alcoholic liver disease: functional independence of ATPase activity and chaperone function. Free Radical Biology and Medicine, 2014, 73, 411-420.	2.9	40
62	Abstract 1788: 19-Substituted benzoquinone ansamycins. Hsp90 inhibitors with decreased off-target toxicity. , 2014, , .		0
63	Abstract 233: Prostacyclin analogs, iloprost and treprostinil, differentially influence proliferation of lung tumor cells. , 2014, , .		0
64	Glycation of Glutamate Cysteine Ligase by 2-Deoxy-d-Ribose and its Potential Impact on Chemoresistance in Glioblastoma. Neurochemical Research, 2013, 38, 1838-1849.	3.3	20
65	Increased carbonylation of the lipid phosphatase PTEN contributes to Akt2 activation in a murine model of early alcohol-induced steatosis. Free Radical Biology and Medicine, 2013, 65, 680-692.	2.9	66
66	ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1. Chemico-Biological Interactions, 2013, 202, 22-31.	4.0	35
67	Comparative genomics, molecular evolution and computational modeling of ALDH1B1 and ALDH2. Chemico-Biological Interactions, 2013, 202, 11-21.	4.0	17
68	Identification of Functionally Relevant Lysine Residues That Modulate Human Farnesoid X Receptor Activation. Molecular Pharmacology, 2013, 83, 1078-1086.	2.3	6
69	Inhibition of Wee1 Sensitizes Cancer Cells to Antimetabolite Chemotherapeutics <i>In Vitro</i> and <i>In Vivo</i> , Independent of p53 Functionality. Molecular Cancer Therapeutics, 2013, 12, 2675-2684.	4.1	104
70	Abstract B102: Targeting the SIX1/EYA transcriptional complex as a potential anti-cancer therapy , 2013, , .		1
71	Post-Translational Oxidative Modification and Inactivation of Mitochondrial Complex I in Epileptogenesis. Journal of Neuroscience, 2012, 32, 11250-11258.	3.6	77
72	Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease. Journal of Toxicology, 2012, 2012, 1-12.	3.0	85

#	Article	IF	CITATIONS
73	Inhibition of Hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells. Free Radical Biology and Medicine, 2012, 53, 1-11.	2.9	37
74	The role of glutathione in brain tumor drug resistance. Biochemical Pharmacology, 2012, 83, 1005-1012.	4.4	159
75	Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics. PLoS ONE, 2012, 7, e38459.	2.5	51
76	4-Hydroxynonenal Inhibits SIRT3 via Thiol-Specific Modification. Chemical Research in Toxicology, 2011, 24, 651-662.	3.3	107
77	Posttranslational modification and regulation of glutamate–cysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal. Free Radical Biology and Medicine, 2011, 50, 14-26.	2.9	54
78	2′,5′-Dihydroxychalcone-induced glutathione is mediated by oxidative stress and kinase signaling pathways. Free Radical Biology and Medicine, 2011, 51, 1146-1154.	2.9	22
79	Mechanismâ€Based Inhibition of Quinone Reductase 2 (NQO2): Selectivity for NQO2 over NQO1 and Structural Basis for Flavoprotein Inhibition. ChemBioChem, 2011, 12, 1203-1208.	2.6	20
80	A Mechanistic and Structural Analysis of the Inhibition of the 90-kDa Heat Shock Protein by the Benzoquinone and Hydroquinone Ansamycins. Molecular Pharmacology, 2011, 79, 823-832.	2.3	15
81	A Novel Missense Mutation in FGG (c.944C>A) Encodes for An Amino Acid Change (p.Ala315Asp) in the Gamma Chain of Fibrinogen Causing Hypofibrinogenemia and a Thrombotic Phenotype. Blood, 2011, 118, 856-856.	1.4	0
82	Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity. Toxicology and Applied Pharmacology, 2010, 243, 35-45.	2.8	7
83	Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Molecular Aspects of Medicine, 2009, 30, 86-98.	6.4	330
84	Motor protein–dependent transport of AMPA receptors into spines during long-term potentiation. Nature Neuroscience, 2008, 11, 457-466.	14.8	233
85	In Vitro and in Silico Characterization of Peroxiredoxin 6 Modified by 4-Hydroxynonenal and 4-Oxononenal. Chemical Research in Toxicology, 2008, 21, 2289-2299.	3.3	47
86	Enzymatic Reduction and Glutathione Conjugation of Benzoquinone Ansamycin Heat Shock Protein 90 Inhibitors: Relevance for Toxicity and Mechanism of Action. Drug Metabolism and Disposition, 2008, 36, 2050-2057.	3.3	54
87	Brain-derived Neurotrophic Factor Regulates the Expression and Synaptic Delivery ofα-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunits in Hippocampal Neurons. Journal of Biological Chemistry, 2007, 282, 12619-12628.	3.4	212
88	Development of Indolequinone Mechanism-Based Inhibitors of NAD(P)H:Quinone Oxidoreductase 1 (NQO1):  NQO1 Inhibition and Growth Inhibitory Activity in Human Pancreatic MIA PaCa-2 Cancer Cells. Biochemistry, 2007, 46, 5941-5950.	2.5	42
89	Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO Journal, 2006, 25, 1623-1634.	7.8	130
90	The Bioreduction of a Series of Benzoquinone Ansamycins by NAD(P)H:Quinone Oxidoreductase 1 to More Potent Heat Shock Protein 90 Inhibitors, the Hydroquinone Ansamycins. Molecular Pharmacology, 2006, 70, 1194-1203.	2.3	60

#	Article	IF	CITATIONS
91	Formation of 17-Allylamino-Demethoxygeldanamycin (17-AAG) Hydroquinone by NAD(P)H:Quinone Oxidoreductase 1: Role of 17-AAG Hydroquinone in Heat Shock Protein 90 Inhibition. Cancer Research, 2005, 65, 10006-10015.	0.9	163
92	NMDA Receptor-Dependent Activation of the Small GTPase Rab5 Drives the Removal of Synaptic AMPA Receptors during Hippocampal LTD. Neuron, 2005, 45, 81-94.	8.1	194
93	Local Control of AMPA Receptor Trafficking at the Postsynaptic Terminal by a Small GTPase of the Rab Family. Journal of Biological Chemistry, 2004, 279, 43870-43878.	3.4	125
94	Independent Functions of hsp90 in Neurotransmitter Release and in the Continuous Synaptic Cycling of AMPA Receptors. Journal of Neuroscience, 2004, 24, 4758-4766.	3.6	79