
## Bruce Ernest Kemp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/830508/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An AMPKα2-specific phospho-switch controls lysosomal targeting for activation. Cell Reports, 2022, 38, 110365.                                                                                                                    | 6.4  | 8         |
| 2  | Disrupting AMPK-Glycogen Binding in Mice Increases Carbohydrate Utilization and Reduces Exercise<br>Capacity. Frontiers in Physiology, 2022, 13, 859246.                                                                          | 2.8  | 2         |
| 3  | Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Molecular Metabolism, 2022, 61, 101514.                                                          | 6.5  | 10        |
| 4  | Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Molecular<br>Metabolism, 2022, 62, 101513.                                                                                                | 6.5  | 8         |
| 5  | Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal, 2022, 479, 1181-1204.                                                                               | 3.7  | 6         |
| 6  | Blocking AMPK signalling to acetyl-CoA carboxylase increases cisplatin-induced acute kidney injury and suppresses the benefit of metformin. Biomedicine and Pharmacotherapy, 2022, 153, 113377.                                   | 5.6  | 4         |
| 7  | AMPK mediates energetic stressâ€induced liver GDF15. FASEB Journal, 2021, 35, e21218.                                                                                                                                             | 0.5  | 25        |
| 8  | Post-Translational Modifications of the Energy Guardian AMP-Activated Protein Kinase. International<br>Journal of Molecular Sciences, 2021, 22, 1229.                                                                             | 4.1  | 18        |
| 9  | Voluntary physical activity protects against olanzapine-induced hyperglycemia. Journal of Applied<br>Physiology, 2021, 130, 466-478.                                                                                              | 2.5  | 4         |
| 10 | Mice with Whole-Body Disruption of AMPK-Glycogen Binding Have Increased Adiposity, Reduced Fat<br>Oxidation and Altered Tissue Glycogen Dynamics. International Journal of Molecular Sciences, 2021,<br>22, 9616.                 | 4.1  | 7         |
| 11 | Relationships between Mitochondrial Function, AMPK, and TORC1 Signaling in Lymphoblasts with<br>Premutation Alleles of the FMR1 Gene. International Journal of Molecular Sciences, 2021, 22, 10393.                               | 4.1  | 2         |
| 12 | Salsalate reduces atherosclerosis through AMPKβ1 in mice. Molecular Metabolism, 2021, 53, 101321.                                                                                                                                 | 6.5  | 8         |
| 13 | AMPK activation by SC4 inhibits noradrenaline-induced lipolysis and insulin-stimulated lipogenesis in white adipose tissue. Biochemical Journal, 2021, 478, 3869-3889.                                                            | 3.7  | 4         |
| 14 | Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Frontiers in Psychiatry, 2021, 12, 747268.                                             | 2.6  | 4         |
| 15 | Foam Cell Induction Activates AMPK But Uncouples Its Regulation of Autophagy and Lysosomal<br>Homeostasis. International Journal of Molecular Sciences, 2020, 21, 9033.                                                           | 4.1  | 7         |
| 16 | Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms.<br>Nature Metabolism, 2020, 2, 873-881.                                                                                          | 11.9 | 76        |
| 17 | CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. Journal of Biological Chemistry, 2020, 295, 16239-16250.                                                                                                 | 3.4  | 24        |
| 18 | Functional analysis of an R311C variant of Ca <sup>2+</sup> â€calmodulinâ€dependent protein kinase<br>kinaseâ€2 (CaMKK2) found as a de novo mutation in a patient with bipolar disorder. Bipolar Disorders,<br>2020, 22, 841-848. | 1.9  | 9         |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The myokine meteorinâ€like (metrnl) improves glucose tolerance in both skeletal muscle cells and mice<br>by targeting AMPKα2. FEBS Journal, 2020, 287, 2087-2104.                                                                                                 | 4.7  | 40        |
| 20 | Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Molecular<br>Metabolism, 2020, 41, 101048.                                                                                                                                       | 6.5  | 22        |
| 21 | Effects of PKB/Akt inhibitors on insulin-stimulated lipogenesis and phosphorylation state of lipogenic enzymes in white adipose tissue. Biochemical Journal, 2020, 477, 1373-1389.                                                                                | 3.7  | 5         |
| 22 | ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt<br>dual pathways. FASEB Journal, 2019, 33, 14825-14840.                                                                                                     | 0.5  | 20        |
| 23 | AMPK β1 activation suppresses antipsychoticâ€induced hyperglycemia in mice. FASEB Journal, 2019, 33,<br>14010-14021.                                                                                                                                              | 0.5  | 18        |
| 24 | Absence of the β1 subunit of <scp>AMP</scp> â€activated protein kinase reduces myofibroblast<br>infiltration of the kidneys in early diabetes. International Journal of Experimental Pathology, 2019,<br>100, 114-122.                                            | 1.3  | 2         |
| 25 | Inhibition of Adenosine Monophosphate–Activated Protein Kinase–3â€Hydroxyâ€3â€Methylglutaryl<br>Coenzyme A Reductase Signaling Leads to Hypercholesterolemia and Promotes Hepatic Steatosis and<br>Insulin Resistance. Hepatology Communications, 2019, 3, 84-98. | 4.3  | 56        |
| 26 | Visualizing AMPK Drug Binding Sites Through Crystallization of Full-Length Phosphorylated α2β1γ1<br>Heterotrimer. Methods in Molecular Biology, 2018, 1732, 15-27.                                                                                                | 0.9  | 1         |
| 27 | Structural Determinants for Small-Molecule Activation of Skeletal Muscle AMPK α2β2γ1 by the Glucose<br>Importagog SC4. Cell Chemical Biology, 2018, 25, 728-737.e9.                                                                                               | 5.2  | 40        |
| 28 | AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. Journal of<br>Biological Chemistry, 2018, 293, 8874-8885.                                                                                                                | 3.4  | 98        |
| 29 | Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell Death Discovery, 2018, 4, 39.                                                                                                     | 4.7  | 61        |
| 30 | Loss of BIM increases mitochondrial oxygen consumption and lipid oxidation, reduces adiposity and improves insulin sensitivity in mice. Cell Death and Differentiation, 2018, 25, 217-225.                                                                        | 11.2 | 18        |
| 31 | The Spectrum of Neurological and White Matter Changes and Premutation Status Categories of Older<br>Male Carriers of the FMR1 Alleles Are Linked to Genetic (CGG and FMR1 mRNA) and Cellular Stress<br>(AMPK) Markers. Frontiers in Genetics, 2018, 9, 531.       | 2.3  | 7         |
| 32 | Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the<br>Anti-Fibrotic Effect of Metformin. Journal of the American Society of Nephrology: JASN, 2018, 29,<br>2326-2336.                                              | 6.1  | 93        |
| 33 | AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. ELife, 2018, 7, .                                                                                                                              | 6.0  | 58        |
| 34 | Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nature Medicine, 2018,<br>24, 1384-1394.                                                                                                                                              | 30.7 | 200       |
| 35 | AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood, 2018, 132, 1180-1192.                                                                                                                                              | 1.4  | 57        |
| 36 | Impact of Genetic Variation on Human CaMKK2 Regulation by Ca2+-Calmodulin and Multisite<br>Phosphorylation. Scientific Reports, 2017, 7, 43264.                                                                                                                   | 3.3  | 15        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | <scp>AMPK</scp> l̂²1 reduces tumor progression and improves survival in p53 null mice. Molecular<br>Oncology, 2017, 11, 1143-1155.                                                | 4.6  | 28        |
| 38 | The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nature Communications, 2017, 8, 571.                                                                            | 12.8 | 65        |
| 39 | Energy sensing through a sugar diphosphate. Nature, 2017, 548, 36-37.                                                                                                             | 27.8 | 7         |
| 40 | Fake Inhibitors: AMPK Activation Trumps Inhibition. Cell Chemical Biology, 2017, 24, 775-777.                                                                                     | 5.2  | 3         |
| 41 | Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige<br>Adipose Tissue Function. Cell Metabolism, 2016, 24, 118-129.               | 16.2 | 259       |
| 42 | Renoprotective Effects of Metformin are Independent of Organic Cation Transporters 1 & amp; 2 and AMP-activated Protein Kinase in the Kidney. Scientific Reports, 2016, 6, 35952. | 3.3  | 32        |
| 43 | β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated<br>Protein Kinase. Scientific Reports, 2016, 6, 39417.                         | 3.3  | 13        |
| 44 | Immortalized Parkinson's Disease lymphocytes have enhanced mitochondrial respiratory activity. DMM<br>Disease Models and Mechanisms, 2016, 9, 1295-1305.                          | 2.4  | 40        |
| 45 | An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer<br>cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.                       | 30.7 | 106       |
| 46 | Salsalate (Salicylate) Uncouples Mitochondria, Improves Glucose Homeostasis, and Reduces Liver<br>Lipids Independent of AMPK-1²1. Diabetes, 2016, 65, 3352-3361.                  | 0.6  | 57        |
| 47 | Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nature Communications, 2016, 7, 10912.                             | 12.8 | 69        |
| 48 | Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 3049-3063.                          | 3.6  | 128       |
| 49 | Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons. PLoS ONE, 2016, 11, e0159381.                                          | 2.5  | 63        |
| 50 | Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiological Reports, 2015, 3, e12444.                        | 1.7  | 16        |
| 51 | Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S mutation linked to anxiety and bipolar disorder. Scientific Reports, 2015, 5, 14436.      | 3.3  | 28        |
| 52 | AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovascular Research, 2015, 107, 235-245.                  | 3.8  | 67        |
| 53 | SnRK1 from <i>Arabidopsis thaliana</i> is an atypical <scp>AMPK</scp> . Plant Journal, 2015, 82, 183-192.                                                                         | 5.7  | 115       |
| 54 | AMPK Activation of Muscle Autophagy Prevents Fasting-Induced Hypoglycemia and Myopathy during<br>Aging. Cell Metabolism, 2015, 21, 883-890.                                       | 16.2 | 190       |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Exerciseâ€stimulated interleukinâ€15 is controlled by <scp>AMPK</scp> and regulates skin metabolism and aging. Aging Cell, 2015, 14, 625-634.                                                                              | 6.7  | 123       |
| 56 | High intensity interval training improves liver and adipose tissue insulin sensitivity. Molecular<br>Metabolism, 2015, 4, 903-915.                                                                                         | 6.5  | 90        |
| 57 | Salicylate improves macrophage cholesterol homeostasis via activation of Ampk. Journal of Lipid Research, 2015, 56, 1025-1033.                                                                                             | 4.2  | 55        |
| 58 | Inhibition of AMP-Activated Protein Kinase at the Allosteric Drug-Binding Site Promotes Islet Insulin Release. Chemistry and Biology, 2015, 22, 705-711.                                                                   | 6.0  | 50        |
| 59 | Skeletal muscle AMPK is essential for the maintenance of FNDC5 expression. Physiological Reports, 2015, 3, e12343.                                                                                                         | 1.7  | 11        |
| 60 | Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells <i>ex vivo</i> through inhibition of <i>de novo</i> lipogenesis. Biochemical Journal, 2015, 469, 177-187. | 3.7  | 79        |
| 61 | Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochemical Journal, 2015, 468, 125-132.                                                                | 3.7  | 132       |
| 62 | The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Molecular Metabolism, 2015, 4, 643-651.                                                                          | 6.5  | 31        |
| 63 | Choreography of AMPK activation. Cell Research, 2015, 25, 5-6.                                                                                                                                                             | 12.0 | 60        |
| 64 | Reduced skeletal muscle AMPK and mitochondrial markers do not promote age-induced insulin resistance. Journal of Applied Physiology, 2014, 117, 171-179.                                                                   | 2.5  | 8         |
| 65 | Activation of AMPK reduces the co-transporter activity of NKCC1. Molecular Membrane Biology, 2014, 31, 95-102.                                                                                                             | 2.0  | 10        |
| 66 | Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress. FASEB Journal, 2014, 28, 3384-3395.                                                      | 0.5  | 47        |
| 67 | PPARδactivation attenuates hepatic steatosis in Ldlr mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. Journal of Lipid Research, 2014, 55, 1254-1266.                                | 4.2  | 61        |
| 68 | Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream<br>Kinase Signaling. Chemistry and Biology, 2014, 21, 619-627.                                                            | 6.0  | 137       |
| 69 | Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. American<br>Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E688-E696.                                          | 3.5  | 75        |
| 70 | Muscleâ€specific AMPK β1β2â€null mice display a myopathy due to loss of capillary density in nonpostural<br>muscles. FASEB Journal, 2014, 28, 2098-2107.                                                                   | 0.5  | 25        |
| 71 | Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.                                                                                            | 6.0  | 103       |
| 72 | Evidence for the role of AMPK in regulating PGCâ€1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity, 2014, 22, 730-738.                                                             | 3.0  | 129       |

| #  | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia, 2014, 57, 1693-1702.                                                                                                                                 | 6.3  | 105       |
| 74 | AMPK-Dependent Inhibitory Phosphorylation of ACC Is Not Essential for Maintaining Myocardial Fatty<br>Acid Oxidation. Circulation Research, 2014, 115, 518-524.                                                                                                                       | 4.5  | 43        |
| 75 | Novel mechanisms of Na <sup>+</sup> retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK. American Journal of Physiology - Renal Physiology, 2014, 307, F96-F106.                                                                                       | 2.7  | 28        |
| 76 | ATP sensitive bi-quinoline activator of the AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 2014, 443, 435-440.                                                                                                                                    | 2.1  | 5         |
| 77 | Mutant TDP-43 Deregulates AMPK Activation by PP2A in ALS Models. PLoS ONE, 2014, 9, e90449.                                                                                                                                                                                           | 2.5  | 46        |
| 78 | Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine, 2013, 19, 1649-1654.                                                                                                                      | 30.7 | 674       |
| 79 | AMPK couples plasma renin to cellular metabolism by phosphorylation of ACC1. American Journal of Physiology - Renal Physiology, 2013, 305, F679-F690.                                                                                                                                 | 2.7  | 18        |
| 80 | Pro-GRP-Derived Peptides Are Expressed in Colorectal Cancer Cells and Tumors and Are Biologically<br>Active in Vivo. Endocrinology, 2012, 153, 1082-1092.                                                                                                                             | 2.8  | 10        |
| 81 | AMPK functions as an adenylate charge-regulated protein kinase. Trends in Endocrinology and Metabolism, 2012, 23, 125-132.                                                                                                                                                            | 7.1  | 167       |
| 82 | The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase. Science, 2012, 336, 918-922.                                                                                                                                                                             | 12.6 | 649       |
| 83 | The Outcome of Renal Ischemia-Reperfusion Injury Is Unchanged in AMPK-β1 Deficient Mice. PLoS ONE, 2012, 7, e29887.                                                                                                                                                                   | 2.5  | 27        |
| 84 | Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochemical and Biophysical Research<br>Communications, 2011, 408, 505-510.                                                                                                                                         | 2.1  | 38        |
| 85 | Inhibition of Connexin 26 by the AMP-Activated Protein Kinase. Journal of Membrane Biology, 2011, 240, 151-158.                                                                                                                                                                       | 2.1  | 11        |
| 86 | Ca2+/Calmodulin-dependent Protein Kinase Kinase Î <sup>2</sup> Is Regulated by Multisite Phosphorylation. Journal of Biological Chemistry, 2011, 286, 28066-28079.                                                                                                                    | 3.4  | 62        |
| 87 | AMP-activated protein kinase (AMPK) l²1l²2 muscle null mice reveal an essential role for AMPK in<br>maintaining mitochondrial content and glucose uptake during exercise. Proceedings of the National<br>Academy of Sciences of the United States of America, 2011, 108, 16092-16097. | 7.1  | 357       |
| 88 | AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase. Science, 2011, 332, 1433-1435.                                                                                                                                                                                            | 12.6 | 499       |
| 89 | Inhibition of the heterotetrameric K+channel KCNQ1/KCNE1 by the AMP-activated protein kinase.<br>Molecular Membrane Biology, 2011, 28, 79-89.                                                                                                                                         | 2.0  | 34        |
| 90 | Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance<br>in obesity. Journal of Clinical Investigation, 2011, 121, 4903-4915.                                                                                                             | 8.2  | 291       |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Downâ€regulation of Na <sup>+</sup> â€coupled glutamate transporter EAAT3 and EAAT4 by AMPâ€activated protein kinase. Journal of Neurochemistry, 2010, 113, 1426-1435.                                                                    | 3.9  | 27        |
| 92  | 5â€aminoimidazoleâ€4â€carboxamide ribonucleoside and AMPâ€activated protein kinase inhibit signalling<br>through NFâ€̂¤B. Immunology and Cell Biology, 2010, 88, 754-760.                                                                 | 2.3  | 50        |
| 93  | Germline deletion of AMPâ€activated protein kinase β subunits reduces bone mass without altering osteoclast differentiation or function. FASEB Journal, 2010, 24, 275-285.                                                                | 0.5  | 52        |
| 94  | AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2010, 285, 115-122.                                                                                                | 3.4  | 154       |
| 95  | Regulation of Na <sup>+</sup> -coupled glucose carrier SGLT1 by AMP-activated protein kinase.<br>Molecular Membrane Biology, 2010, 27, 137-144.                                                                                           | 2.0  | 61        |
| 96  | β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated<br>protein kinase (AMPK). Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 19237-19241. | 7.1  | 267       |
| 97  | Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise<br>Capacity. Journal of Biological Chemistry, 2010, 285, 37198-37209.                                                                    | 3.4  | 145       |
| 98  | Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner. Cell Metabolism, 2010, 11, 390-401.                                                                                                                     | 16.2 | 747       |
| 99  | Isolation, identification and biological activity of gastrin-releasing peptide 1–46 (oGRP1–46), the primary GRP gene-derived peptide product of the pregnant ovine endometrium. Peptides, 2010, 31, 284-290.                              | 2.4  | 6         |
| 100 | Principles of Kinase Regulation. , 2010, , 559-563.                                                                                                                                                                                       |      | 19        |
| 101 | Substrates of Cyclic Nucleotide-Dependent Protein Kinases. , 2010, , 1489-1495.                                                                                                                                                           |      | 1         |
| 102 | High-Density Lipoprotein Modulates Glucose Metabolism in Patients With Type 2 Diabetes Mellitus.<br>Circulation, 2009, 119, 2103-2111.                                                                                                    | 1.6  | 363       |
| 103 | Association of AMP-activated Protein Kinase Subunits With Glycogen Particles as Revealed In Situ by<br>Immunoelectron Microscopy. Journal of Histochemistry and Cytochemistry, 2009, 57, 963-971.                                         | 2.5  | 32        |
| 104 | Impaired Skeletal Muscle β-Adrenergic Activation and Lipolysis Are Associated with Whole-Body Insulin<br>Resistance in Rats Bred for Low Intrinsic Exercise Capacity. Endocrinology, 2009, 150, 4883-4891.                                | 2.8  | 44        |
| 105 | Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting CLUT4 translocation. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E57-E66.                    | 3.5  | 34        |
| 106 | Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. American<br>Journal of Physiology - Renal Physiology, 2009, 296, F801-F809.                                                                    | 2.7  | 13        |
| 107 | Ciliary Neurotrophic Factor Stimulates Muscle Clucose Uptake by a PI3-Kinase–Dependent Pathway<br>That Is Impaired With Obesity. Diabetes, 2009, 58, 829-839.                                                                             | 0.6  | 47        |
| 108 | Reduced AMP-activated protein kinase activity in mouse skeletal muscle does not exacerbate the development of insulin resistance with obesity. Diabetologia, 2009, 52, 2395-2404.                                                         | 6.3  | 42        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Examination of â€~lipotoxicity' in skeletal muscle of highâ€fat fed and <i>ob</i> / <i>ob</i> mice. Journal of<br>Physiology, 2009, 587, 1593-1605.                                                                               | 2.9  | 95        |
| 110 | Structure and function of AMPâ€activated protein kinase. Acta Physiologica, 2009, 196, 3-14.                                                                                                                                      | 3.8  | 70        |
| 111 | Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. International Journal of Biochemistry and Cell Biology, 2009, 41, 2403-2412.                                             | 2.8  | 52        |
| 112 | High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes. Heart Lung and Circulation, 2009, 18, S244.                                                                                               | 0.4  | 1         |
| 113 | AMPK in Health and Disease. Physiological Reviews, 2009, 89, 1025-1078.                                                                                                                                                           | 28.8 | 1,423     |
| 114 | Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes. Chemistry and Biology, 2008, 15, 1220-1230.                                                                                | 6.0  | 221       |
| 115 | AMPKâ€independent pathways regulate skeletal muscle fatty acid oxidation. Journal of Physiology, 2008, 586, 5819-5831.                                                                                                            | 2.9  | 121       |
| 116 | Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics, 2008, 9, 245.                                | 2.6  | 62        |
| 117 | Increased glycogen stores due to Î <sup>3</sup> -AMPK overexpression protects against ischemia and reperfusion damage. Biochemical Pharmacology, 2008, 75, 1482-1491.                                                             | 4.4  | 25        |
| 118 | Hypothalamic CaMKK2 Contributes to the Regulation of Energy Balance. Cell Metabolism, 2008, 7, 377-388.                                                                                                                           | 16.2 | 331       |
| 119 | Glutathionyl haemoglobin is not increased in diabetes nor related to glycaemia, complications,<br>dyslipidaemia, inflammation or other measures of oxidative stress. Diabetes Research and Clinical<br>Practice, 2008, 80, e1-e3. | 2.8  | 16        |
| 120 | Bradykinin stimulates endothelial cell fatty acid oxidation by CaMKK-dependent activation of AMPK.<br>Atherosclerosis, 2008, 200, 28-36.                                                                                          | 0.8  | 45        |
| 121 | AMP-Activated Protein Kinase Regulates GLUT4 Transcription by Phosphorylating Histone Deacetylase 5. Diabetes, 2008, 57, 860-867.                                                                                                 | 0.6  | 359       |
| 122 | AMP-activated Protein Kinase Subunit Interactions. Journal of Biological Chemistry, 2008, 283, 4799-4807.                                                                                                                         | 3.4  | 29        |
| 123 | Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle<br>PPARα and UCP2 expression in rats. Journal of Endocrinology, 2008, 198, 367-374.                                               | 2.6  | 55        |
| 124 | Phosphatidylinositol Ether Lipid Analogues Induce AMP-Activated Protein Kinase–Dependent Death in<br>LKB1-Mutant Non–Small Cell Lung Cancer Cells. Cancer Research, 2008, 68, 580-588.                                            | 0.9  | 44        |
| 125 | Adipose Triglyceride Lipase Regulation of Skeletal Muscle Lipid Metabolism and Insulin Responsiveness.<br>Molecular Endocrinology, 2008, 22, 1200-1212.                                                                           | 3.7  | 36        |
| 126 | Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment. Journal of Applied Physiology, 2008, 105, 1422-1427.                                                            | 2.5  | 20        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. Journal of Applied Physiology, 2008, 105, 1519-1526.                                                                                                                             | 2.5  | 63        |
| 128 | Metabolic Remodeling in Adipocytes Promotes Ciliary Neurotrophic Factor-Mediated Fat Loss in Obesity. Endocrinology, 2008, 149, 2546-2556.                                                                                                                                                           | 2.8  | 50        |
| 129 | AMP-activated Protein Kinase Impairs Endothelial Actin Cytoskeleton Assembly by Phosphorylating<br>Vasodilator-stimulated Phosphoprotein. Journal of Biological Chemistry, 2007, 282, 4601-4612.                                                                                                     | 3.4  | 95        |
| 130 | Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to<br>glycogen accumulation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292,<br>E802-E811.                                                                                  | 3.5  | 62        |
| 131 | Adipocyte triglyceride lipase expression in human obesity. American Journal of Physiology -<br>Endocrinology and Metabolism, 2007, 293, E958-E964.                                                                                                                                                   | 3.5  | 134       |
| 132 | Dysregulation of muscle lipid metabolism in rats selectively bred for low aerobic running capacity.<br>American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1631-E1636.                                                                                                        | 3.5  | 19        |
| 133 | Tissue-Specific Effects of Rosiglitazone and Exercise in the Treatment of Lipid-Induced Insulin<br>Resistance. Diabetes, 2007, 56, 1856-1864.                                                                                                                                                        | 0.6  | 85        |
| 134 | Low-density lipoprotein particles and risk of intracerebral haemorrhage in subjects with<br>cerebrovascular disease. European Journal of Cardiovascular Prevention and Rehabilitation, 2007, 14,<br>413-418.                                                                                         | 2.8  | 6         |
| 135 | Regulation of the renal-specific Na+–K+–2Clâ^' co-transporter NKCC2 by AMP-activated protein kinase<br>(AMPK). Biochemical Journal, 2007, 405, 85-93.                                                                                                                                                | 3.7  | 83        |
| 136 | Perindopril-based blood pressure-lowering therapy reduces amino-terminal-pro-B-type natriuretic peptide in individuals with cerebrovascular disease. Journal of Hypertension, 2007, 25, 699-705.                                                                                                     | 0.5  | 8         |
| 137 | Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. Journal of Molecular and Cellular Cardiology, 2007, 42, 271-279.                                                                                                                                           | 1.9  | 453       |
| 138 | Adiponectin: Starving for Attention. Cell Metabolism, 2007, 6, 3-4.                                                                                                                                                                                                                                  | 16.2 | 21        |
| 139 | Leptin stimulation of COXIV is impaired in obese skeletal muscle myotubes. Obesity Research and Clinical Practice, 2007, 1, 53-60.                                                                                                                                                                   | 1.8  | 10        |
| 140 | AMPK Structure and Regulation from Three Angles. Structure, 2007, 15, 1161-1163.                                                                                                                                                                                                                     | 3.3  | 59        |
| 141 | AMP-activated protein kinase — the fat controller of the energy railroadThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference Canadian Journal of Physiology and Pharmacology, 2006. 84. 655-665. | 1.4  | 66        |
| 142 | Production, Secretion, and Biological Activity of the C-Terminal Flanking Peptide of Human<br>Progastrin. Gastroenterology, 2006, 131, 1463-1474.                                                                                                                                                    | 1.3  | 20        |
| 143 | Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein<br>abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Applied Physiology,<br>Nutrition and Metabolism, 2006, 31, 302-312.                                                 | 1.9  | 83        |
| 144 | Phosphorylation of Neuronal and Endothelial Nitric Oxide Synthase in the Kidney with High and Low<br>Salt Diets. Nephron Physiology, 2006, 102, p36-p50.                                                                                                                                             | 1.2  | 22        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metabolism, 2006, 4, 465-474.                                                                            | 16.2 | 363       |
| 146 | Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice. Neuromuscular Disorders, 2006, 16, 337-346.                                                       | 0.6  | 26        |
| 147 | Soluble Vascular Cell Adhesion Molecule 1 and N-terminal Pro–B-Type Natriuretic Peptide in Predicting<br>Ischemic Stroke in Patients With Cerebrovascular Disease. Archives of Neurology, 2006, 63, 60.                        | 4.5  | 41        |
| 148 | Activators of the energy sensing kinase AMPK inhibit random cell movement and chemotaxis in U937 cells. Immunology and Cell Biology, 2006, 84, 6-12.                                                                           | 2.3  | 21        |
| 149 | CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine, 2006, 12, 541-548.                                                                                                       | 30.7 | 250       |
| 150 | Differential Regulation of Adiponectin Receptor Gene Expression by Adiponectin and Leptin in<br>Myotubes Derived from Obese and Diabetic Individuals. Obesity, 2006, 14, 1898-1904.                                            | 3.0  | 35        |
| 151 | Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes.<br>Journal of Physiology, 2006, 574, 139-147.                                                                              | 2.9  | 91        |
| 152 | AICAR inhibits the Na+/H+ exchanger in rat hearts—possible contribution to cardioprotection.<br>Pflugers Archiv European Journal of Physiology, 2006, 453, 147-156.                                                            | 2.8  | 13        |
| 153 | Chutes and Ladders: the search for protein kinases that act on AMPK. Trends in Biochemical Sciences, 2006, 31, 13-16.                                                                                                          | 7.5  | 107       |
| 154 | The Suppressor of Cytokine Signaling 3 Inhibits Leptin Activation of AMP-Kinase in Cultured Skeletal<br>Muscle of Obese Humans. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3592-3597.                         | 3.6  | 97        |
| 155 | Ciliary Neurotrophic Factor Suppresses Hypothalamic AMP-Kinase Signaling in Leptin-Resistant Obese<br>Mice. Endocrinology, 2006, 147, 3906-3914.                                                                               | 2.8  | 92        |
| 156 | Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty<br>Acid Oxidation In Vitro via AMP-Activated Protein Kinase. Diabetes, 2006, 55, 2688-2697.                                 | 0.6  | 699       |
| 157 | Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E694-E702.                            | 3.5  | 78        |
| 158 | Chronic rosiglitazone treatment restores AMPKα2 activity in insulin-resistant rat skeletal muscle.<br>American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E251-E257.                                     | 3.5  | 58        |
| 159 | Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans.<br>American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E566-E573.                                        | 3.5  | 32        |
| 160 | Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism<br>during low-dose AICAR infusion. American Journal of Physiology - Endocrinology and Metabolism,<br>2006, 291, E1131-E1140. | 3.5  | 6         |
| 161 | Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of<br>Physiology - Endocrinology and Metabolism, 2006, 290, E500-E508.                                                        | 3.5  | 197       |
| 162 | Rosiglitazone Treatment Enhances Acute AMP-Activated Protein Kinase-Mediated Muscle and Adipose<br>Tissue Glucose Uptake in High-Fat-Fed Rats. Diabetes, 2006, 55, 2797-2804.                                                  | 0.6  | 59        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the<br>onset of exercise. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2006, 291, R1094-R1099.                             | 1.8 | 18        |
| 164 | Regulation of AMP-activated Protein Kinase by Multisite Phosphorylation in Response to Agents That Elevate Cellular cAMP*. Journal of Biological Chemistry, 2006, 281, 36662-36672.                                                                                   | 3.4 | 231       |
| 165 | Protein tyrosine phosphatase hPTPN20a is targeted to sites of actin polymerization. Biochemical<br>Journal, 2005, 389, 343-354.                                                                                                                                       | 3.7 | 17        |
| 166 | Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. Journal of Physiology, 2005, 568, 665-676.                                                                                                   | 2.9 | 108       |
| 167 | Structural Basis for Glycogen Recognition by AMP-Activated Protein Kinase. Structure, 2005, 13, 1453-1462.                                                                                                                                                            | 3.3 | 175       |
| 168 | Kinetic properties of nuclear transport conferred by the retinoblastoma (Rb) NLS. Journal of Cellular<br>Biochemistry, 2005, 95, 782-793.                                                                                                                             | 2.6 | 24        |
| 169 | Breast cancer protein StarD10 identified by three-dimensional separation using free-flow electrophoresis, reversed-phase high-performance liquid chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis, 2005, 26, 1029-1037. | 2.4 | 7         |
| 170 | Prevailing hyperglycemia is critical in the regulation of glucose metabolism during exercise in poorly controlled alloxan-diabetic dogs. Journal of Applied Physiology, 2005, 98, 930-939.                                                                            | 2.5 | 13        |
| 171 | Impaired Activation of AMP-Kinase and Fatty Acid Oxidation by Globular Adiponectin in Cultured<br>Human Skeletal Muscle of Obese Type 2 Diabetics. Journal of Clinical Endocrinology and Metabolism,<br>2005, 90, 3665-3672.                                          | 3.6 | 173       |
| 172 | Acute renal ischemia rapidly activates the energy sensor AMPK but does not increase phosphorylation<br>of eNOS-Ser <sup>1177</sup> . American Journal of Physiology - Renal Physiology, 2005, 289, F1103-F1115.                                                       | 2.7 | 61        |
| 173 | Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality. American Journal of Physiology - Renal Physiology, 2005, 288, F578-F586.                                                                            | 2.7 | 63        |
| 174 | The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases.<br>Journal of Biological Chemistry, 2005, 280, 29060-29066.                                                                                                            | 3.4 | 867       |
| 175 | AMP-activated Protein Kinase β Subunit Tethers α and γ Subunits via Its C-terminal Sequence (186–270).<br>Journal of Biological Chemistry, 2005, 280, 13395-13400.                                                                                                    | 3.4 | 117       |
| 176 | Src Kinase Activates Endothelial Nitric-oxide Synthase by Phosphorylating Tyr-83. Journal of Biological Chemistry, 2005, 280, 35943-35952.                                                                                                                            | 3.4 | 94        |
| 177 | Socs1 Deficiency Enhances Hepatic Insulin Signaling. Journal of Biological Chemistry, 2005, 280, 31516-31521.                                                                                                                                                         | 3.4 | 35        |
| 178 | Prediction of Myocardial Infarction by N-Terminal-Pro-B-Type Natriuretic Peptide, C-Reactive Protein, and Renin in Subjects With Cerebrovascular Disease. Circulation, 2005, 112, 110-116.                                                                            | 1.6 | 71        |
| 179 | Prediction of Heart Failure by Amino Terminal-pro–B-Type Natriuretic Peptide and C-Reactive Protein in<br>Subjects With Cerebrovascular Disease. Hypertension, 2005, 45, 69-74.                                                                                       | 2.7 | 39        |
| 180 | Associations of Inflammatory and Hemostatic Variables With the Risk of Recurrent Stroke. Stroke, 2005, 36, 2143-2147.                                                                                                                                                 | 2.0 | 123       |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | AMP-Activated Protein Kinase Is Not Down-Regulated in Human Skeletal Muscle of Obese Females.<br>Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4575-4580.                                                                                     | 3.6 | 81        |
| 182 | βâ€∎drenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. FASEB Journal,<br>2004, 18, 1445-1446.                                                                                                                                | 0.5 | 68        |
| 183 | Platelet-Derived Growth Factor Receptor Transactivation Mediates the Trophic Effects of Angiotensin<br>II In Vivo. Hypertension, 2004, 44, 195-202.                                                                                                         | 2.7 | 52        |
| 184 | Reduced NOS3 Phosphorylation Mediates Reduced NO/cGMP Signaling in Mesenteric Arteries of Deoxycorticosterone Acetate-Salt Hypertensive Rats. Hypertension, 2004, 43, 1080-1085.                                                                            | 2.7 | 30        |
| 185 | The Phosphoprotein StarD10 Is Overexpressed in Breast Cancer and Cooperates with ErbB Receptors in Cellular Transformation. Cancer Research, 2004, 64, 3538-3544.                                                                                           | 0.9 | 37        |
| 186 | High-density lipoprotein and apolipoprotein Al increase endothelial NO synthase activity by protein<br>association and multisite phosphorylation. Proceedings of the National Academy of Sciences of the<br>United States of America, 2004, 101, 6999-7004. | 7.1 | 152       |
| 187 | Mutations in the Gal83 Glycogen-Binding Domain Activate the Snf1/Gal83 Kinase Pathway by a Glycogen-Independent Mechanism. Molecular and Cellular Biology, 2004, 24, 352-361.                                                                               | 2.3 | 50        |
| 188 | Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. British Journal of Cancer, 2004, 91, 129-140.                                                                                                 | 6.4 | 110       |
| 189 | Intensified exercise training does not alter AMPK signaling in human skeletal muscle. American<br>Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E737-E743.                                                                               | 3.5 | 48        |
| 190 | Insulin resistance does not diminish eNOS expression, phosphorylation, or binding to HSP-90.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2384-H2393.                                                                  | 3.2 | 44        |
| 191 | Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL<br>activity, in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism,<br>2004, 287, E120-E127.                               | 3.5 | 84        |
| 192 | Acute activation and phosphorylation of endothelial nitric oxide synthase by HMC-CoA reductase inhibitors. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H560-H566.                                                         | 3.2 | 101       |
| 193 | Effect of exercise on protein kinase C activity and localization in human skeletal muscle. Journal of<br>Physiology, 2004, 561, 861-870.                                                                                                                    | 2.9 | 48        |
| 194 | Intrasteric control of AMPK via the Â1 subunit AMP allosteric regulatory site. Protein Science, 2004, 13, 155-165.                                                                                                                                          | 7.6 | 141       |
| 195 | Expression and biochemical analysis of the entire HIV-2 gp41 ectodomain: determinants of stability map to N- and C-terminal sequences outside the 6-helix bundle core. FEBS Letters, 2004, 567, 183-188.                                                    | 2.8 | 13        |
| 196 | Incidence immunoassay for distinguishing recent from established HIV-1 infection in therapy-naive populations. Aids, 2004, 18, 2253-2259.                                                                                                                   | 2.2 | 53        |
| 197 | The T-cell protein tyrosine phosphatase is phosphorylated on Ser-304 by cyclin-dependent protein<br>kinases in mitosis. Biochemical Journal, 2004, 380, 939-949.                                                                                            | 3.7 | 19        |
| 198 | Bateman domains and adenosine derivatives form a binding contract. Journal of Clinical Investigation, 2004, 113, 182-184.                                                                                                                                   | 8.2 | 120       |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Bateman domains and adenosine derivatives form a binding contract. Journal of Clinical Investigation, 2004, 113, 182-184.                                                                                                                                             | 8.2 | 66        |
| 200 | Identification of a Parathyroid Hormone in the Fish Fugu rubripes. Journal of Bone and Mineral Research, 2003, 18, 1326-1331.                                                                                                                                         | 2.8 | 62        |
| 201 | AMPK β Subunit Targets Metabolic Stress Sensing to Glycogen. Current Biology, 2003, 13, 867-871.                                                                                                                                                                      | 3.9 | 377       |
| 202 | Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radical Biology and Medicine, 2003, 35, 729-741.                                                                                                  | 2.9 | 86        |
| 203 | A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin<br>(mTOR) signalling pathway. Genes To Cells, 2003, 8, 65-79.                                                                                                        | 1.2 | 319       |
| 204 | Compensatory Phosphorylation and Protein-Protein Interactions Revealed by Loss of Function and<br>Gain of Function Mutants of Multiple Serine Phosphorylation Sites in Endothelial Nitric-oxide<br>Synthase. Journal of Biological Chemistry, 2003, 278, 14841-14849. | 3.4 | 214       |
| 205 | Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clbkinase activity: a mechanism for CLB cluster gene activation. Genes and Development, 2003, 17, 1789-1802.                                                                          | 5.9 | 92        |
| 206 | Regulation of Channel Gating by AMP-activated Protein Kinase Modulates Cystic Fibrosis<br>Transmembrane Conductance Regulator Activity in Lung Submucosal Cells. Journal of Biological<br>Chemistry, 2003, 278, 998-1004.                                             | 3.4 | 102       |
| 207 | Effect of Exercise Intensity on Skeletal Muscle AMPK Signaling in Humans. Diabetes, 2003, 52, 2205-2212.                                                                                                                                                              | 0.6 | 299       |
| 208 | A Mitotic Cascade of NIMA Family Kinases. Journal of Biological Chemistry, 2003, 278, 34897-34909.                                                                                                                                                                    | 3.4 | 154       |
| 209 | Exercise Increases Nuclear AMPK Â2 in Human Skeletal Muscle. Diabetes, 2003, 52, 926-928.                                                                                                                                                                             | 0.6 | 135       |
| 210 | Protein Kinase C β Inhibition Attenuates the Progression of Experimental Diabetic Nephropathy in the Presence of Continued Hypertension. Diabetes, 2003, 52, 512-518.                                                                                                 | 0.6 | 173       |
| 211 | Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E813-E822.                                                             | 3.5 | 281       |
| 212 | Skeletal muscle basal AMP-activated protein kinase activity is chronically elevated in alloxan-diabetic dogs: impact of exercise. Journal of Applied Physiology, 2003, 95, 1523-1530.                                                                                 | 2.5 | 14        |
| 213 | AMP-activated protein kinase, super metabolic regulator. Biochemical Society Transactions, 2003, 31, 162-168.                                                                                                                                                         | 3.4 | 436       |
| 214 | Principles of Kinase Regulation. , 2003, , 539-542.                                                                                                                                                                                                                   |     | 0         |
| 215 | AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. Thrombosis and Haemostasis, 2003, 90, 863-871.                                                                                          | 3.4 | 86        |
|     |                                                                                                                                                                                                                                                                       |     |           |

Peptide Substrates of Cyclic Nucleotide-Dependent Protein Kinases. , 2003, , 495-499.

1

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Localization of Endothelial Nitric-oxide Synthase Phosphorylated on Serine 1179 and Nitric Oxide in<br>Golgi and Plasma Membrane Defines the Existence of Two Pools of Active Enzyme. Journal of<br>Biological Chemistry, 2002, 277, 4277-4284. | 3.4 | 189       |
| 218 | Identification of Regulatory Sites of Phosphorylation of the Bovine Endothelial Nitric-oxide Synthase at Serine 617 and Serine 635. Journal of Biological Chemistry, 2002, 277, 42344-42351.                                                    | 3.4 | 183       |
| 219 | Impaired Cardiac Contractility Response to Hemodynamic Stress in S100A1-Deficient Mice. Molecular<br>and Cellular Biology, 2002, 22, 2821-2829.                                                                                                 | 2.3 | 107       |
| 220 | Shear stress stimulates phosphorylation of eNOS at Ser <sup>635</sup> by a protein kinase A-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1819-H1828.                                     | 3.2 | 205       |
| 221 | AMP-activated protein kinase kinase: detection with recombinant AMPK α1 subunit. Biochemical and<br>Biophysical Research Communications, 2002, 293, 892-898.                                                                                    | 2.1 | 60        |
| 222 | Role of 5′AMPâ€activated protein kinase in glycogen synthase activity and glucose utilization: insights<br>from patients with McArdle's disease. Journal of Physiology, 2002, 541, 979-989.                                                     | 2.9 | 76        |
| 223 | Malonyl-CoA Decarboxylase Is Not a Substrate of AMP-Activated Protein Kinase in Rat Fast-Twitch<br>Skeletal Muscle or an Islet Cell Line. Archives of Biochemistry and Biophysics, 2001, 396, 71-79.                                            | 3.0 | 44        |
| 224 | An activating mutation in the γ1 subunit of the AMP-activated protein kinase. FEBS Letters, 2001, 500, 163-168.                                                                                                                                 | 2.8 | 100       |
| 225 | Regulation of no synthesis by AMP-activated protein kinase. Journal of Molecular and Cellular Cardiology, 2001, 33, A157.                                                                                                                       | 1.9 | 0         |
| 226 | Human Factor H-related Protein 5 (FHR-5). Journal of Biological Chemistry, 2001, 276, 6747-6754.                                                                                                                                                | 3.4 | 67        |
| 227 | Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochemical Journal, 2001, 354, 275.                                                                      | 3.7 | 151       |
| 228 | Post-translational modifications of the $\hat{l}^2$ -1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochemical Journal, 2001, 354, 275-283.                                                       | 3.7 | 226       |
| 229 | Aminoguanidine and ramipril prevent diabetes-induced increases in protein kinase C activity in glomeruli, retina and mesenteric artery. Clinical Science, 2001, 100, 249.                                                                       | 4.3 | 30        |
| 230 | AMP-Activated Protein Kinase is Highly Expressed in Neurons in the Developing Rat Brain and Promotes<br>Neuronal Survival Following Glucose Deprivation. Journal of Molecular Neuroscience, 2001, 17, 45-58.                                    | 2.3 | 307       |
| 231 | Constitutive c-Myb amino-terminal phosphorylation and DNA binding activity uncoupled during entry and passage through the cell cycle. Oncogene, 2001, 20, 1784-1792.                                                                            | 5.9 | 19        |
| 232 | Phosphorylation of Thr <sup>495</sup> Regulates Ca <sup>2+</sup> /Calmodulin-Dependent<br>Endothelial Nitric Oxide Synthase Activity. Circulation Research, 2001, 88, E68-75.                                                                   | 4.5 | 612       |
| 233 | Coordinated Control of Endothelial Nitric-oxide Synthase Phosphorylation by Protein Kinase C and the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2001, 276, 17625-17628.                                                    | 3.4 | 484       |
| 234 | Reciprocal Phosphorylation and Regulation of Endothelial Nitric-oxide Synthase in Response to<br>Bradykinin Stimulation. Journal of Biological Chemistry, 2001, 276, 16587-16591.                                                               | 3.4 | 331       |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Cellular Stress Regulates the Nucleocytoplasmic Distribution of the Protein-tyrosine Phosphatase<br>TCPTP. Journal of Biological Chemistry, 2001, 276, 37700-37707.                                                                                                                                      | 3.4  | 61        |
| 236 | AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1202-E1206.                                                                                                      | 3.5  | 275       |
| 237 | Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes, 2000, 49, 87-93.                                                                                                          | 0.6  | 117       |
| 238 | Functional Implications of the Human T-Lymphotropic Virus Type 1 Transmembrane Glycoprotein<br>Helical Hairpin Structure. Journal of Virology, 2000, 74, 6614-6621.                                                                                                                                      | 3.4  | 38        |
| 239 | Stimulation of AMP-Activated Protein Kinase (AMPK) Is Associated with Enhancement of Glut1-Mediated Glucose Transport. Archives of Biochemistry and Biophysics, 2000, 380, 347-352.                                                                                                                      | 3.0  | 149       |
| 240 | AMP-Activated Protein Kinase Is Activated by the Stimulations of Gq-Coupled Receptors. Biochemical and Biophysical Research Communications, 2000, 276, 16-22.                                                                                                                                            | 2.1  | 62        |
| 241 | FHA domain boundaries of the Dun1p and Rad53p cell cycle checkpoint kinases. FEBS Letters, 2000, 471, 141-146.                                                                                                                                                                                           | 2.8  | 31        |
| 242 | Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. Journal of Clinical Investigation, 2000, 105, 1711-1721.                                                                                                  | 8.2  | 199       |
| 243 | Protein Serine/Threonine Kinases. , 2000, , 297-310.                                                                                                                                                                                                                                                     |      | 0         |
| 244 | Peptide Specificity Determinants at Pâ^'7 and Pâ^'6 Enhance the Catalytic Efficiency of<br>Ca2+/Calmodulin-dependent Protein Kinase I in the Absence of Activation Loop Phosphorylation.<br>Journal of Biological Chemistry, 1999, 274, 20215-20222.                                                     | 3.4  | 27        |
| 245 | Evolutionary Conservation of the Membrane Fusion Machine. IUBMB Life, 1999, 48, 151-156.                                                                                                                                                                                                                 | 3.4  | 6         |
| 246 | The Protein-tyrosine Phosphatase TCPTP Regulates Epidermal Growth Factor Receptor-mediated and<br>Phosphatidylinositol 3-Kinase-dependent Signaling. Journal of Biological Chemistry, 1999, 274,<br>27768-27775.                                                                                         | 3.4  | 96        |
| 247 | Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a<br>maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins.<br>Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4319-4324. | 7.1  | 207       |
| 248 | Phosphorylation at the Cyclin-dependent Kinases Site (Thr85) of Parathyroid Hormone-related Protein<br>Negatively Regulates Its Nuclear Localization. Journal of Biological Chemistry, 1999, 274, 18559-18566.                                                                                           | 3.4  | 86        |
| 249 | Active site-directed protein regulation. Nature, 1999, 402, 373-376.                                                                                                                                                                                                                                     | 27.8 | 196       |
| 250 | Structural basis of autoregulation of phenylalanine hydroxylase. Nature Structural Biology, 1999, 6, 442-448.                                                                                                                                                                                            | 9.7  | 199       |
| 251 | Structure study of osteostatin PTHrP[Thr107](107–139). BBA - Proteins and Proteomics, 1999, 1432, 64-72.                                                                                                                                                                                                 | 2.1  | 22        |
| 252 | The Akt kinase signals directly to endothelial nitric oxide synthase. Current Biology, 1999, 9, 845-S1.                                                                                                                                                                                                  | 3.9  | 445       |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Dealing with energy demand: the AMP-activated protein kinase. Trends in Biochemical Sciences, 1999, 24, 22-25.                                                                                                                        | 7.5 | 488       |
| 254 | AMPâ€activated protein kinase phosphorylation of endothelial NO synthase. FEBS Letters, 1999, 443, 285-289.                                                                                                                           | 2.8 | 729       |
| 255 | Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle. FEBS Letters, 1999, 460, 343-348.                                                                                                               | 2.8 | 114       |
| 256 | Synapsins as major neuronal Ca2+/S100A1-interacting proteins. Biochemical Journal, 1999, 344, 577-583.                                                                                                                                | 3.7 | 19        |
| 257 | Synapsins as major neuronal Ca2+/S100A1-interacting proteins. Biochemical Journal, 1999, 344, 577.                                                                                                                                    | 3.7 | 8         |
| 258 | Cellular Distribution and Developmental Expression of AMPâ€Activated Protein Kinase Isoforms in<br>Mouse Central Nervous System. Journal of Neurochemistry, 1999, 72, 1707-1716.                                                      | 3.9 | 238       |
| 259 | Crystallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimera<br>with maltoseâ€binding protein. Protein Science, 1998, 7, 1612-1619.                                                         | 7.6 | 67        |
| 260 | Components of a Calmodulin-dependent Protein Kinase Cascade. Journal of Biological Chemistry, 1998, 273, 31880-31889.                                                                                                                 | 3.4 | 235       |
| 261 | Functional Domains of the α1 Catalytic Subunit of the AMP-activated Protein Kinase. Journal of<br>Biological Chemistry, 1998, 273, 35347-35354.                                                                                       | 3.4 | 314       |
| 262 | Mutation-Directed Chemical Cross-Linking of Human Immunodeficiency Virus Type 1 gp41 Oligomers.<br>Journal of Virology, 1998, 72, 1523-1533.                                                                                          | 3.4 | 14        |
| 263 | Contraction-induced Changes in Acetyl-CoA Carboxylase and 5′-AMP-activated Kinase in Skeletal<br>Muscle. Journal of Biological Chemistry, 1997, 272, 13255-13261.                                                                     | 3.4 | 354       |
| 264 | Posttranslational Modifications of the 5′-AMP-activated Protein Kinase β1 Subunit. Journal of Biological<br>Chemistry, 1997, 272, 24475-24479.                                                                                        | 3.4 | 135       |
| 265 | Solution Structure of Parathyroid Hormone Related Protein (Residues 1–34) Containing an Ala<br>Substituted for an Ile in Position 15 (PTHrP[Ala15]-(1–34)). Journal of Biological Chemistry, 1997, 272,<br>29572-29578.               | 3.4 | 46        |
| 266 | The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of<br>leucine-rich repeat proteins. Proceedings of the National Academy of Sciences of the United States of<br>America, 1997, 94, 3685-3690. | 7.1 | 52        |
| 267 | Analysis of budding yeast kinases controlled by DNA damage. Methods in Enzymology, 1997, 283, 399-410.                                                                                                                                | 1.0 | 9         |
| 268 | AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS<br>Letters, 1997, 409, 452-456.                                                                                                       | 2.8 | 112       |
| 269 | Interaction of the Recombinant S100A1 Protein with Twitchin Kinase, and Comparison with Other Ca2+-Binding Proteins. FEBS Journal, 1997, 249, 127-133.                                                                                | 0.2 | 27        |
| 270 | Regulation and crystallization of phosphorylated and dephosphorylated forms of truncated dimeric phenylalanine hydroxylase. Protein Science, 1997, 6, 1352-1357.                                                                      | 7.6 | 20        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | 3 Intrasteric regulation of protein kinases. Advances in Second Messenger and Phosphoprotein<br>Research, 1997, 31, 29-40.                                                                                        | 4.5  | 18        |
| 272 | Human immunodeficiency virus type 1 envelope glycoprotein oligomerization requires the gp41<br>amphipathic alpha-helical/leucine zipper-like sequence. Journal of Virology, 1997, 71, 2041-2049.                  | 3.4  | 72        |
| 273 | Protein Kinase CK2: Biphasic Kinetics with Peptide Substrates. Archives of Biochemistry and Biophysics, 1996, 325, 289-294.                                                                                       | 3.0  | 9         |
| 274 | Evidence That the PTH Receptor Binding Site on PTHrP(1–34) Can Hinge at ARG19/ARG20. Biochemical and Biophysical Research Communications, 1996, 220, 431-436.                                                     | 2.1  | 14        |
| 275 | Pseudosubstrate Flexibility in Chicken Smooth Muscle Myosin Light Chain Kinase. Biochemical and<br>Biophysical Research Communications, 1996, 224, 690-695.                                                       | 2.1  | 0         |
| 276 | Structure of the pseudosubstrate recognition site of chicken smooth muscle myosin light chain kinase. BBA - Proteins and Proteomics, 1996, 1292, 106-112.                                                         | 2.1  | 3         |
| 277 | Substrate Specificity and Inhibitor Sensitivity of Ca2+/S100-dependent Twitchin Kinases. FEBS Journal, 1996, 242, 454-459.                                                                                        | 0.2  | 29        |
| 278 | Ca2+ /S100 regulation of giant protein kinases. Nature, 1996, 380, 636-639.                                                                                                                                       | 27.8 | 138       |
| 279 | Isoform-specific Purification and Substrate Specificity of the 5′-AMP-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 28445-28450.                                                          | 3.4  | 108       |
| 280 | Non-catalytic - and -Subunit Isoforms of the 5′-AMP-activated Protein Kinase. Journal of Biological<br>Chemistry, 1996, 271, 8675-8681.                                                                           | 3.4  | 120       |
| 281 | Multiple Ca2+-Calmodulin-dependent Protein Kinase Kinases from Rat Brain. Journal of Biological<br>Chemistry, 1996, 271, 10806-10810.                                                                             | 3.4  | 85        |
| 282 | Regulation of 5′-AMP-activated Protein Kinase Activity by the Noncatalytic β and γ Subunits. Journal of<br>Biological Chemistry, 1996, 271, 17798-17803.                                                          | 3.4  | 171       |
| 283 | Mammalian AMP-activated Protein Kinase Subfamily. Journal of Biological Chemistry, 1996, 271, 611-614.                                                                                                            | 3.4  | 569       |
| 284 | Arg21 is the Preferred Kexin Cleavage Site in Parathyroid-Hormone-Related Protein. FEBS Journal, 1995, 229, 91-98.                                                                                                | 0.2  | 22        |
| 285 | Synthetic peptides representing sequences within gp41 of HIV as immunogens for murine T- and B-cell responses. Archives of Virology, 1995, 140, 635-654.                                                          | 2.1  | 5         |
| 286 | Evidence That the Pertussis Toxin-sensitive Trimeric GTP-binding Protein Gi2 Is Required for Agonist-<br>and Store-activated Ca2+ Inflow in Hepatocytes. Journal of Biological Chemistry, 1995, 270, 25893-25897. | 3.4  | 32        |
| 287 | Catalytic subunits of the porcine and rat 5′-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1266, 73-82.              | 4.1  | 75        |
| 288 | Insert Regions in Domain X of the Casein Kinase II Catalytic Subunit. FEBS Journal, 1995, 229, 703-709.                                                                                                           | 0.2  | 3         |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Determinants of human immunodeficiency virus type 1 envelope glycoprotein oligomeric structure.<br>Journal of Virology, 1995, 69, 1209-1218.                                                                          | 3.4  | 63        |
| 290 | Phosphorylation of phospholamban in aortic smooth muscle cells and heart by calcium/calmodulin-dependent protein kinase II. Cellular Signalling, 1994, 6, 617-630.                                                    | 3.6  | 11        |
| 291 | Stabilized NMR structure of the hypercalcemia of malignancy peptide PTHrP[Ala-26](1–34) amide. BBA -<br>Proteins and Proteomics, 1994, 1208, 256-262.                                                                 | 2.1  | 19        |
| 292 | Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends in Biochemical Sciences, 1994, 19, 440-444.                                                                      | 7.5  | 146       |
| 293 | Insights into autoregulation from the crystal structure of twitchin kinase. Nature, 1994, 369, 581-584.                                                                                                               | 27.8 | 217       |
| 294 | Simplified conjugation chemistry for coupling peptides to F(ab′) fragments: autologous red cell<br>agglutination assay for HIV-1 antibodies. Journal of Immunological Methods, 1994, 175, 267-273.                    | 1.4  | 7         |
| 295 | Autologous red cell agglutination test for antibodies to feline immunodeficiency virus. Veterinary<br>Immunology and Immunopathology, 1994, 42, 253-263.                                                              | 1.2  | 2         |
| 296 | Hepatic 5′-AMP-Activated Protein Kinase: Zonal Distribution and Relationship to Acetyl-CoA Carboxylase<br>Activity in Varying Nutritional States. Archives of Biochemistry and Biophysics, 1994, 308, 413-419.        | 3.0  | 68        |
| 297 | Crystallization and preliminary x-ray analysis of the auto-inhibited twitchin kinase. Journal of<br>Molecular Biology, 1994, 236, 1259-1261.                                                                          | 4.2  | 9         |
| 298 | Chicken smooth muscle myosin light chain kinase is acetylated on its NH2-terminal methionine.<br>Molecular and Cellular Biochemistry, 1993, 127-128, 81-91.                                                           | 3.1  | 7         |
| 299 | NMR solution structure of the [Ala26]parathyroid-hormone-related protein(1 - 34) expressed in humoral hypercalcemia of malignancy. FEBS Journal, 1993, 211, 205-211.                                                  | 0.2  | 24        |
| 300 | FTIR spectroscopy study of PTHrP(1–34) involved in humoral hypercalcaemia of malignancy. BBA -<br>Proteins and Proteomics, 1993, 1162, 187-194.                                                                       | 2.1  | 4         |
| 301 | NMR solution structure of human parathyroid hormone(1-34). Biochemistry, 1993, 32, 7126-7132.                                                                                                                         | 2.5  | 68        |
| 302 | Kinetics of the autologous red cell agglutination test. Journal of Immunological Methods, 1993, 165,<br>183-192.                                                                                                      | 1.4  | 11        |
| 303 | Chicken smooth muscle myosin light chain kinase is acetylated on its NH2-terminal methionine. , 1993, , 81-91.                                                                                                        |      | 0         |
| 304 | Structural basis of the intrasteric regulation of myosin light chain kinases. Science, 1992, 258, 130-135.                                                                                                            | 12.6 | 126       |
| 305 | Antibody Epitopes Sensitive to the State of Human Immunodeficiency Virus Type 1 gp41 Oligomerization<br>Map to a Putative α-Helical Region. AIDS Research and Human Retroviruses, 1992, 8, 2055-2062.                 | 1.1  | 32        |
| 306 | Regulation of intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein<br>kinase Proceedings of the National Academy of Sciences of the United States of America, 1992, 89,<br>12127-12131. | 7.1  | 87        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | CD8+ T-cells from HIV-infected patients can either augment or abrogate HIV-specific<br>lymphoproliferation. Clinical Immunology and Immunopathology, 1992, 64, 254-260.                                                                          | 2.0 | 2         |
| 308 | Intrasteric regulation of myosin light chain kinase: the pseudosubstrate prototope binds to the active site. Molecular Endocrinology, 1992, 6, 621-626.                                                                                          | 3.7 | 8         |
| 309 | Intrasteric regulation of protein kinases and phosphatases. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 1991, 1094, 67-76.                                                                                                       | 4.1 | 146       |
| 310 | Rapid whole blood assay for HIV-1 seropositivity using an Fab-peptide conjugate. Journal of<br>Immunological Methods, 1991, 138, 111-119.                                                                                                        | 1.4 | 32        |
| 311 | [3] Protein kinase phosphorylation site sequences and consensus specificity motifs: Tabulations.<br>Methods in Enzymology, 1991, 200, 62-81.                                                                                                     | 1.0 | 983       |
| 312 | [10] Design and use of peptide substrates for protein kinases. Methods in Enzymology, 1991, 200, 121-134.                                                                                                                                        | 1.0 | 116       |
| 313 | [24] Pseudosubstrate-based peptide inhibitors. Methods in Enzymology, 1991, 201, 287-304.                                                                                                                                                        | 1.0 | 94        |
| 314 | Proteolytic cleavage sites in smooth muscle myosin-light-chain kinase and their relation to structural and regulatory domains. FEBS Journal, 1991, 200, 723-730.                                                                                 | 0.2 | 26        |
| 315 | A Carboxyl-Terminal Peptide from the Parathyroid Hormone-Related Protein Inhibits Bone Resorption by Osteoclasts*. Endocrinology, 1991, 129, 1762-1768.                                                                                          | 2.8 | 159       |
| 316 | Localization of cofactor binding sites with monoclonal anti-idiotype antibodies: phenylalanine<br>hydroxylase Proceedings of the National Academy of Sciences of the United States of America, 1991,<br>88, 5734-5738.                           | 7.1 | 42        |
| 317 | Regulatory and structural motifs of chicken gizzard myosin light chain kinase Proceedings of the<br>National Academy of Sciences of the United States of America, 1990, 87, 2284-2288.                                                           | 7.1 | 223       |
| 318 | Use of a conserved immunodominant epitope of HIV surface glycoprotein gp41 in the detection of early antibodies. Aids, 1990, 4, 83-86.                                                                                                           | 2.2 | 24        |
| 319 | Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. FEBS Journal, 1990,<br>194, 89-94.                                                                                                                              | 0.2 | 135       |
| 320 | Protein kinase C pseudosubstrate prototope: Structure-function relationships. Cellular Signalling,<br>1990, 2, 187-190.                                                                                                                          | 3.6 | 73        |
| 321 | Active tyrosine phosphatase in immunoprecipitates of multiple isoforms of Ly-5. Cellular Signalling, 1990, 2, 299-304.                                                                                                                           | 3.6 | 0         |
| 322 | Comparison of the effects of amino-terminal synthetic parathyroid hormone-related peptide (PTHrP)<br>of malignancy and parathyroid hormone on resorption of cultured fetal rat long bones. Calcified<br>Tissue International, 1990, 46, 233-238. | 3.1 | 29        |
| 323 | A rapid wholeâ€blood immunoassay system. Medical Journal of Australia, 1990, 152, 75-77.                                                                                                                                                         | 1.7 | 27        |
| 324 | Protein kinase recognition sequence motifs. Trends in Biochemical Sciences, 1990, 15, 342-346.                                                                                                                                                   | 7.5 | 1,036     |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Vasopressin antisense peptide interactions with the V1 receptor. Peptides, 1990, 11, 857-862.                                                                                   | 2.4  | 12        |
| 326 | Actions of parathyroid hormone-related protein on the rat kidney in vivo. Journal of Endocrinology, 1989, 122, 229-235.                                                         | 2.6  | 33        |
| 327 | Regulation of protein kinases by pseudosubstrate prototopes. Cellular Signalling, 1989, 1, 303-311.                                                                             | 3.6  | 29        |
| 328 | NMR study of a 34-residue N-terminal fragment of the parathyroid-hormone-related protein secreted during humoral hypercalcemia of malignancy. FEBS Journal, 1989, 184, 379-394. | 0.2  | 63        |
| 329 | A calmodulin-binding peptide relaxes skinned muscle from guinea-pig taenia coli. Pflugers Archiv<br>European Journal of Physiology, 1989, 414, 282-285.                         | 2.8  | 10        |
| 330 | Effects of modulators of myosin light-chain kinase activity in single smooth muscle cells. Nature, 1989, 338, 164-167.                                                          | 27.8 | 151       |
| 331 | A synthetic peptide analog of the putative substrate-binding motif activates protein kinase C. FEBS<br>Letters, 1989, 249, 243-247.                                             | 2.8  | 37        |
| 332 | Synthesis of <i>O</i> â€phosphonotyrosyl peptides. International Journal of Peptide and Protein<br>Research, 1989, 33, 428-438.                                                 | 0.1  | 41        |
| 333 | Autologous red cell agglutination assay for HIV-1 antibodies: simplified test with whole blood.<br>Science, 1988, 241, 1352-1354.                                               | 12.6 | 70        |
| 334 | Hydroxyamino acid specificity of smooth muscle myosin light chain kinase. Archives of Biochemistry and Biophysics, 1988, 260, 37-44.                                            | 3.0  | 5         |
| 335 | Recognition of envelope and tat protein synthetic peptide analogs by HIV positive sera or plasma. FEBS<br>Letters, 1988, 233, 393-396.                                          | 2.8  | 19        |
| 336 | Mapping of calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II from rat brain.<br>Biochemical and Biophysical Research Communications, 1988, 152, 122-128. | 2.1  | 61        |
| 337 | [16] Peptide inhibitors of CAMP-dependent protein kinase. Methods in Enzymology, 1988, 159, 173-183.                                                                            | 1.0  | 52        |
| 338 | Autoregulation of enzymes by pseudosubstrate prototopes: myosin light chain kinase. Science, 1988, 241, 970-973.                                                                | 12.6 | 162       |
| 339 | HUMORAL HYPERCALCEMIA OF MALIGNANCY: INVOLVEMENT OF A NOVEL HORMONE. Australian and New Zealand Journal of Medicine, 1988, 18, 287-295.                                         | 0.5  | 12        |
| 340 | Parathyroid hormone-related protein of malignancy: active synthetic fragments. Science, 1987, 238, 1568-1570.                                                                   | 12.6 | 386       |
| 341 | Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II.<br>Science, 1987, 237, 293-297.                                               | 12.6 | 187       |
| 342 | Calcitonin Receptors of Human Osteoclastoma. Hormone and Metabolic Research, 1987, 19, 585-589.                                                                                 | 1.5  | 68        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Parathyroid hormone-related protein purified from a human lung cancer cell line Proceedings of the<br>National Academy of Sciences of the United States of America, 1987, 84, 5048-5052.                                 | 7.1  | 720       |
| 344 | Rapid characterization of protein epitopes recognized by monoclonal antibodies using direct probing on thin-layer and paper chromatograms. Journal of Immunological Methods, 1987, 97, 229-235.                          | 1.4  | 8         |
| 345 | Evidence for a second phosphorylation site on eIF-2α from rabbit reticulocytes. FEBS Letters, 1987, 215, 16-20.                                                                                                          | 2.8  | 25        |
| 346 | Endothelium and the vasodilator action of rat calcitonin geneâ€related peptide (CGRP). British Journal of Pharmacology, 1987, 91, 729-733.                                                                               | 5.4  | 109       |
| 347 | Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science, 1987, 238, 1726-1728.                                                                                                           | 12.6 | 1,022     |
| 348 | A Parathyroid Hormone-Related Protein Implicated in Malignant Hypercalcemia: Cloning and Expression. Science, 1987, 237, 893-896.                                                                                        | 12.6 | 1,304     |
| 349 | NMR of a synthetic peptide spanning the triphosphate binding site of adenosine 5'-triphosphate in actin.<br>Biochemistry, 1987, 26, 1471-1478.                                                                           | 2.5  | 13        |
| 350 | Further studies on the structure of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. FEBS Journal, 1987, 163, 253-258.                                                                      | 0.2  | 49        |
| 351 | Synthetic myelin basic protein peptide analogs are specific inhibitors of<br>phospholipid/calcium-dependent protein kinase (protein kinase C). Biochemical and Biophysical<br>Research Communications, 1986, 134, 78-84. | 2.1  | 22        |
| 352 | Nonmuscle myosin phosphorylation sites for calcium-dependent and calcium-independent protein kinases. Biochemical and Biophysical Research Communications, 1986, 134, 240-247.                                           | 2.1  | 14        |
| 353 | Chemical modification of lysine and arginine residues in the myosin regulatory light chain inhibits phosphorylation. BBA - Proteins and Proteomics, 1986, 870, 312-319.                                                  | 2.1  | 3         |
| 354 | Effects of hemin on rat liver cyclic AMP-dependent protein kinases in cell extracts and intact<br>hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 847, 301-308.                              | 4.1  | 4         |
| 355 | Circular dichroic evidence for an ordered sequence of ligand/binding site interactions in the catalytic reaction of the cAMP-dependent protein kinase. Biochemistry, 1985, 24, 2967-2973.                                | 2.5  | 60        |
| 356 | Synthetic peptide substrates for the membrane tyrosine protein kinase stimulated by epidermal growth<br>factor. FEBS Journal, 1984, 140, 363-367.                                                                        | 0.2  | 39        |
| 357 | Synthesis of protected derivatives of O-phosphotyrosine incorporation in a heptapeptide. Tetrahedron<br>Letters, 1984, 25, 2609-2612.                                                                                    | 1.4  | 20        |
| 358 | Phosphorylation site sequence of smooth muscle myosin light chain (M r = 20 000). FEBS Letters, 1984,<br>168, 108-112.                                                                                                   | 2.8  | 99        |
| 359 | Phosphorylation of ribosomal protein S6 and a peptide analogue of S6 by a protease-activated kinase<br>isolated from rat liver. FEBS Letters, 1984, 175, 219-226.                                                        | 2.8  | 44        |
| 360 | Role of basic residues in the phosphorylation of synthetic peptides by myosin light chain kinase<br>Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7471-7475.                | 7.1  | 90        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Activity Ratio Measurements Reflect Intracellular Activation of Adenosine<br>3′,5′-Monophosphate-Dependent Protein Kinase in Osteoblasts*. Endocrinology, 1982, 111, 178-183.                          | 2.8  | 65        |
| 362 | Phosphorylation of a synthetic gastrin peptide by the tyrosine kinase of A431 cell membranes.<br>Biochemical and Biophysical Research Communications, 1982, 109, 656-663.                              | 2.1  | 32        |
| 363 | Myosin light chain kinase binding to plastic. FEBS Letters, 1982, 145, 327-331.                                                                                                                        | 2.8  | 17        |
| 364 | Inhibition of phenylephrine-stimulated gluconeogenesis by chlorpromazine is mediated by α-adrenergic<br>receptors. FEBS Letters, 1981, 126, 313-317.                                                   | 2.8  | 6         |
| 365 | The Effect of Somatostatin on the Activation of Adenosine 3′,5′-Monophosphate-Dependent Protein<br>Kinase in Isolated Rat Islets of Langerhans*. Endocrinology, 1980, 106, 1259-1264.                  | 2.8  | 4         |
| 366 | Relative alkali stability of some peptide o -phosphoserine and o -phosphothreonine esters. FEBS Letters, 1980, 110, 308-312.                                                                           | 2.8  | 30        |
| 367 | The Analysis of Insulin-Related Peptides by Reversed-Phase High-Performance Liquid Chromatography.<br>Journal of Liquid Chromatography and Related Technologies, 1979, 2, 919-933.                     | 1.0  | 20        |
| 368 | Isolation of phosphorylated peptides and proteins on ion exchange papers. Analytical Biochemistry, 1978, 87, 566-575.                                                                                  | 2.4  | 361       |
| 369 | In vivo phosphorylation of a synthetic peptide substrate of cyclic AMP-dependent protein kinase<br>Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 248-251. | 7.1  | 56        |
| 370 | Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase<br>Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 1038-1042.  | 7.1  | 234       |
| 371 | Substrate specificity of the cyclic AMP-dependent protein kinase Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 3448-3452.                                 | 7.1  | 202       |
| 372 | Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases. Nature, 1974, 249, 147-150.                                             | 27.8 | 118       |
| 373 | Changes in the specific activity of [γ-32P]ATP during protein kinase assays of crude lymphocyte extracts.<br>Biochimica Et Biophysica Acta - Biomembranes, 1974, 370, 325-328.                         | 2.6  | 1         |
| 374 | AMPK beta1. The AFCS-nature Molecule Pages, 0, , .                                                                                                                                                     | 0.2  | 0         |
| 375 | Calcium/calmodulin dependent protein kinase 2 (CaMKK2) mutation - a novel genetic cause of congenital hyperinsulinism. Endocrine Abstracts, 0, , .                                                     | 0.0  | Ο         |