Chunshan Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86, 211-263.	4.4	1,790
2	Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115, 2-32.	4.4	1,545
3	Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today, 2002, 77, 17-49.	4.4	1,050
4	New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 2003, 41, 207-238.	20.2	1,011
5	Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2Capture. Energy & Fuels, 2002, 16, 1463-1469.	5.1	953
6	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034.	47.7	825
7	Preparation and characterization of novel CO2 "molecular basket―adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous and Mesoporous Materials, 2003, 62, 29-45.	4.4	694
8	Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catalysis Today, 2006, 111, 74-83.	4.4	535
9	A short review of recent advances in CO ₂ hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8, 7651-7669.	3.6	499
10	"Molecular Basket―Sorbents for Separation of CO ₂ and H ₂ S from Various Gas Streams. Journal of the American Chemical Society, 2009, 131, 5777-5783.	13.7	497
11	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	14.6	455
12	A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catalysis Today, 2002, 77, 107-116.	4.4	387
13	Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catalysis Today, 2004, 98, 463-484.	4.4	386
14	Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents. Industrial & Engineering Chemistry Research, 2003, 42, 5293-5304.	3.7	376
15	Chemicals and materials from coal in the 21st century. Fuel, 2002, 81, 15-32.	6.4	344
16	Influence of Moisture on CO2Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research, 2005, 44, 8113-8119.	3.7	344
17	Infrared Study of CO ₂ Sorption over "Molecular Basket―Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. Journal of Physical Chemistry C, 2009, 113, 7260-7268.	3.1	330
18	Characterization of Structural and Surface Properties of Nanocrystalline TiO ₂ â^`CeO ₂ Mixed Oxides by XRD, XPS, TPR, and TPD. Journal of Physical Chemistry C, 2009, 113, 14249-14257.	3.1	323

#	Article	IF	CITATIONS
19	Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy and Environmental Science, 2011, 4, 311-345.	30.8	305
20	Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2015, 170-171, 173-185.	20.2	295
21	Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket―adsorbent. Fuel Processing Technology, 2005, 86, 1457-1472.	7.2	278
22	ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Applied Catalysis B: Environmental, 2018, 220, 397-408.	20.2	265
23	Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. Journal of Catalysis, 2006, 238, 430-440.	6.2	252
24	Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Catalysis B: Environmental, 2005, 56, 137-147.	20.2	247
25	Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF–water mixed solvents. Dalton Transactions, 2013, 42, 13698.	3.3	221
26	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	2.6	200
27	Liquid-Phase Adsorption of Multi-Ring Thiophenic Sulfur Compounds on Carbon Materials with Different Surface Properties. Journal of Physical Chemistry B, 2006, 110, 4699-4707.	2.6	198
28	CO ₂ Hydrogenation to Methanol over In ₂ O ₃ -Based Catalysts: From Mechanism to Catalyst Development. ACS Catalysis, 2021, 11, 1406-1423.	11.2	198
29	Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catalysis Today, 2002, 77, 89-98.	4.4	193
30	Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chemical Engineering Journal, 2015, 281, 360-367.	12.7	189
31	Solvothermal synthesis of NH ₂ -MIL-125(Ti) from circular plate to octahedron. CrystEngComm, 2014, 16, 9645-9650.	2.6	187
32	Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catalysis Today, 2015, 251, 34-40.	4.4	175
33	Mechanistic Understanding of Alloy Effect and Water Promotion for Pd-Cu Bimetallic Catalysts in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2018, 8, 4873-4892.	11.2	171
34	Synthesis of mesoporous molecular sieves: influence of aluminum source on Al incorporation in MCM-41. Catalysis Letters, 1996, 36, 103-109.	2.6	166
35	Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 2005, 101, 255-264.	2.6	166
36	Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Frontiers in Energy Research, 2020, 8, .	2.3	165

#	Article	IF	CITATIONS
37	Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application. 1. ZnO Particles and Extrudates. Energy & Fuels, 2004, 18, 576-583.	5.1	164
38	Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. Journal of CO2 Utilization, 2013, 3-4, 102-106.	6.8	161
39	Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene. Catalysis Today, 2008, 130, 14-23.	4.4	160
40	Synthesis of Hollow Nanocubes and Macroporous Monoliths of Silicalite-1 by Alkaline Treatment. Chemistry of Materials, 2013, 25, 4197-4205.	6.7	156
41	Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N ₃ Sites for Selective Oxidation of Benzene to Phenol. Journal of the American Chemical Society, 2018, 140, 16936-16940.	13.7	156
42	Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh–Ni catalysts for fuel cells. Journal of Catalysis, 2006, 238, 309-320.	6.2	155
43	Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: Characterization and sorption properties. Microporous and Mesoporous Materials, 2013, 169, 103-111.	4.4	152
44	A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today, 2007, 123, 276-284.	4.4	151
45	Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. Journal of Materials Chemistry A, 2015, 3, 16461-16468.	10.3	148
46	Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel. Applied Catalysis B: Environmental, 2011, 101, 718-726.	20.2	147
47	Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 7479-7487.	14.9	145
48	Deep Desulfurization of Gasoline by Selective Adsorption over Nickel-Based Adsorbent for Fuel Cell Applications. Industrial & Engineering Chemistry Research, 2005, 44, 5768-5775.	3.7	144
49	Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Applied Catalysis B: Environmental, 2009, 87, 190-199.	20.2	142
50	Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon, 2011, 49, 5002-5013.	10.3	141
51	Characterization of CeO2-supported Cu–Pd bimetallic catalyst for the oxygen-assisted water–gas shift reaction. Journal of Catalysis, 2008, 260, 358-370.	6.2	138
52	Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. Applied Catalysis A: General, 1999, 176, 1-10.	4.3	136
53	Selective Adsorption for Removal of Nitrogen Compounds from Liquid Hydrocarbon Streams over Carbon- and Alumina-Based Adsorbents. Industrial & Engineering Chemistry Research, 2009, 48, 951-960.	3.7	136
54	Development of a new clay supported polyethylenimine composite for CO2 capture. Applied Energy, 2014, 113, 334-341.	10.1	133

#	Article	IF	CITATIONS
55	Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 2017, 4, 144-153.	6.0	131
56	CO ₂ Hydrogenation on Unpromoted and M-Promoted Co/TiO ₂ Catalysts (M =) Tj ETQ Distribution. ACS Catalysis, 2019, 9, 2739-2751.	q0 0 0 rgB 11.2	T /Overlock 1 130
57	Inâ€Plane Epitaxial Growth of Highly <i>c</i> â€Oriented NH ₂ â€MILâ€125(Ti) Membranes with Superior H ₂ /CO ₂ Selectivity. Angewandte Chemie - International Edition, 2018, 57, 16088-16093.	13.8	125
58	Effects of Aromatics, Diesel Additives, Nitrogen Compounds, and Moisture on Adsorptive Desulfurization of Diesel Fuel over Activated Carbon. Industrial & Engineering Chemistry Research, 2012, 51, 3436-3443.	3.7	124
59	Low Temperature CO ₂ Methanation: ZIF-67-Derived Co-Based Porous Carbon Catalysts with Controlled Crystal Morphology and Size. ACS Sustainable Chemistry and Engineering, 2017, 5, 7824-7831.	6.7	123
60	Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation. Applied Catalysis B: Environmental, 2019, 254, 531-540.	20.2	122
61	Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous and Mesoporous Materials, 2004, 75, 173-181.	4.4	119
62	Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 245, 760-769.	20.2	118
63	Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science and Technology, 2017, 7, 4905-4923.	4.1	115
64	Role of Surface Oxygen-Containing Functional Groups in Liquid-Phase Adsorption of Nitrogen Compounds on Carbon-Based Adsorbents. Energy & Fuels, 2009, 23, 3940-3947.	5.1	114
65	Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons. Catalysis Today, 1996, 31, 137-144.	4.4	112
66	Variation in the In ₂ O ₃ Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction. ACS Catalysis, 2020, 10, 3264-3273.	11.2	112
67	Deconvolution of the Particle Size Effect on CO ₂ Hydrogenation over Iron-Based Catalysts. ACS Catalysis, 2020, 10, 7424-7433.	11.2	108
68	A solid molecular basket sorbent for CO ₂ capture from gas streams with low CO ₂ concentration under ambient conditions. Physical Chemistry Chemical Physics, 2012, 14, 1485-1492.	2.8	107
69	Opportunities for developing specialty chemicals and advanced materials from coals. Fuel Processing Technology, 1993, 34, 157-196.	7.2	106
70	Adsorptive Removal of Organic Sulfur Compounds from Jet Fuel over K-Exchanged NiY Zeolites Prepared by Impregnation and Ion Exchange. Industrial & Engineering Chemistry Research, 2005, 44, 5740-5749.	3.7	106
71	Selfâ€Supporting 3D Carbon Nitride with Tunable n → Ï€* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	21.0	105
72	Pyrolytic degradation studies of a coal-derived and a petroleum-derived aviation jet fuel. Energy & Fuels, 1993, 7, 234-243.	5.1	102

#	Article	IF	CITATIONS
73	Development of Carbon-Based "Molecular Basket―Sorbent for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2012, 51, 3048-3057.	3.7	100
74	Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. Journal of CO2 Utilization, 2017, 21, 100-107.	6.8	100
75	Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene. Catalysis Today, 1996, 31, 93-104.	4.4	99
76	Magnetic ordered mesoporous Fe 3 O 4 /CeO 2 composites with synergy of adsorption and Fenton catalysis. Applied Surface Science, 2017, 425, 526-534.	6.1	98
77	Reconstructing Supramolecular Aggregates to Nitrogen-Deficient g-C ₃ N ₄ Bunchy Tubes with Enhanced Photocatalysis for H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 18746-18753.	8.0	97
78	In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorganic Chemistry Frontiers, 2017, 4, 1870-1880.	6.0	96
79	Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 2019, 29, 140-145.	6.8	96
80	Desulfurization of JP-8 Jet Fuel by Selective Adsorption over a Ni-based Adsorbent for Micro Solid Oxide Fuel Cells. Energy & Fuels, 2005, 19, 1116-1125.	5.1	95
81	Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018, 232, 1-10.	20.2	95
82	Selective CO ₂ Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10182-10190.	6.7	95
83	MCM-41-supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil. Catalysis Today, 2003, 86, 129-140.	4.4	94
84	Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents. Catalysis Today, 2012, 194, 44-52.	4.4	93
85	Oxygen-enhanced water gas shift on ceria-supported Pd–Cu and Pt–Cu bimetallic catalysts. Journal of Catalysis, 2011, 277, 46-53.	6.2	92
86	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
87	Mechanistic Insight into C–C Coupling over Fe–Cu Bimetallic Catalysts in CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2017, 121, 13164-13174.	3.1	91
88	A novel approach for ultraâ€deep adsorptive desulfurization of diesel fuel over TiO ₂ –CeO ₂ /MCMâ€48 under ambient conditions. AICHE Journal, 2013, 59, 1441-1445.	3.6	88
89	Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals. ACS Nano, 2016, 10, 7401-7408.	14.6	88
90	Fe–Cu Bimetallic Catalysts for Selective CO ₂ Hydrogenation to Olefin-Rich C ₂ ⁺ Hydrocarbons. Industrial & Engineering Chemistry Research, 2018, 57, 4535-4542.	3.7	88

#	Article	IF	CITATIONS
91	Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of petroleum resids. Catalysis Today, 1998, 43, 261-272.	4.4	87
92	Influence of ceria and nickel addition to alumina-supported Rh catalyst for propane steam reforming at low temperatures. Applied Catalysis A: General, 2009, 357, 213-222.	4.3	87
93	Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis. Catalysis Today, 2012, 194, 16-24.	4.4	87
94	A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification. Green Chemistry, 2007, 9, 695.	9.0	86
95	Mesoporous-molecular-sieve-supported Polymer Sorbents for Removing H2S from Hydrogen Gas Streams. Topics in Catalysis, 2008, 49, 108-117.	2.8	85
96	Defects Promote Ultrafast Charge Separation in Graphitic Carbon Nitride for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction Activity. Chemistry - A European Journal, 2019, 25, 5028-5035.	3.3	85
97	Influence of nitrogen compounds on deep hydrodesulfurization of 4,6-dimethyldibenzothiophene over Al2O3- and MCM-41-supported Co-Mo sulfide catalysts. Catalysis Today, 2003, 86, 265-275.	4.4	84
98	Development of silicaâ€gelâ€supported polyethylenimine sorbents for CO ₂ capture from flue gas. AICHE Journal, 2012, 58, 2495-2502.	3.6	84
99	Interconnected Hierarchical ZSM-5 with Tunable Acidity Prepared by a Dealumination–Realumination Process: A Superior MTP Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 26096-26106.	8.0	84
100	Tri-reforming of Methane over Ni Catalysts for CO2 Conversion to Syngas With Desired H2/CO Ratios Using Flue Gas of Power Plants Without CO2 Separation. Studies in Surface Science and Catalysis, 2004, 153, 315-322.	1.5	83
101	Kinetics of Two Pathways for 4,6-Dimethyldibenzothiophene Hydrodesulfurization over NiMo, CoMo Sulfide, and Nickel Phosphide Catalysts. Energy & Fuels, 2005, 19, 353-364.	5.1	82
102	Hydrothermally stable MOFs for CO 2 hydrogenation over iron-based catalyst to light olefins. Journal of CO2 Utilization, 2016, 15, 89-95.	6.8	82
103	Comparative Study on CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Bimetallic Catalysts. Topics in Catalysis, 2014, 57, 588-594.	2.8	81
104	Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene. Catalysis Today, 2011, 160, 179-183.	4.4	80
105	Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. Journal of Catalysis, 2019, 369, 21-32.	6.2	80
106	Zeolite-Supported Pd and Pt Catalysts for Low-Temperature Hydrogenation of Naphthalene in the Absence and Presence of Benzothiophene. Energy & Fuels, 1997, 11, 656-661.	5.1	79
107	Effective Hydrolysis of Cellulose into Glucose over Sulfonated Sugar-Derived Carbon in an Ionic Liquid. Industrial & Engineering Chemistry Research, 2013, 52, 8167-8173.	3.7	77
108	CO ₂ Hydrogenation to Hydrocarbons over Iron-based Catalyst: Effects of Physicochemical Properties of Al ₂ O ₃ Supports. Industrial & Engineering Chemistry Research, 2014, 53, 17563-17569.	3.7	76

#	Article	IF	CITATIONS
109	Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts. Catalysis Today, 1996, 31, 45-56.	4.4	75
110	Sulfuric Acid Modified Bentonite as the Support of Tetraethylenepentamine for CO ₂ Capture. Energy & Fuels, 2013, 27, 1538-1546.	5.1	75
111	Temperature-programmed retention indices for g.c. and g.cm.s. analysis of coal- and petroleum-derived liquid fuels. Fuel, 1995, 74, 1436-1451.	6.4	73
112	A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2020, 383, 283-296.	6.2	73
113	Shape-selective alkylation of naphthalene with isopropanol over mordenite catalysts. Microporous Materials, 1994, 2, 467-476.	1.6	72
114	Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts. Applied Surface Science, 2017, 396, 1383-1392.	6.1	72
115	Oxidative Desulfurization of Jet and Diesel Fuels Using Hydroperoxide Generated in Situ by Catalytic Air Oxidation. Industrial & Engineering Chemistry Research, 2010, 49, 5561-5568.	3.7	71
116	High-Capacity and Low-Cost Carbon-Based "Molecular Basket―Sorbent for CO ₂ Capture from Flue Gas. Energy & Fuels, 2011, 25, 456-458.	5.1	71
117	C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts. Applied Catalysis B: Environmental, 2011, 107, 68-76.	20.2	69
118	Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. Journal of Catalysis, 2018, 366, 237-244.	6.2	68
119	Condensed-Phase Pyrolysis of n-Tetradecane at Elevated Pressures for Long Duration.Product Distribution and Reaction Mechanisms. Industrial & Engineering Chemistry Research, 1994, 33, 534-547.	3.7	67
120	Shape-selective isopropylation of naphthalene over mordenite catalysts: Computational analysis using MOPAC. Applied Catalysis A: General, 1999, 182, 175-181.	4.3	67
121	Analysis and Comparison of Nitrogen Compounds in Different Liquid Hydrocarbon Streams Derived from Petroleum and Coal. Energy & Fuels, 2010, 24, 5539-5547.	5.1	67
122	Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Physical Chemistry Chemical Physics, 2010, 12, 5707.	2.8	67
123	Improving the Carbon Resistance of Ni-Based Steam Reforming Catalyst by Alloying with Rh: A Computational Study Coupled with Reforming Experiments and EXAFS Characterization. ACS Catalysis, 2011, 1, 574-582.	11.2	67
124	Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. RSC Advances, 2015, 5, 17897-17904.	3.6	67
125	Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons. Journal of CO2 Utilization, 2018, 25, 120-127.	6.8	67
126	Hydrogen-Transferring Pyrolysis of Long-Chain Alkanes and Thermal Stability Improvement of Jet Fuels by Hydrogen Donors. Industrial & Engineering Chemistry Research, 1994, 33, 548-557.	3.7	65

#	Article	IF	CITATIONS
127	Non-fuel uses of coals and synthesis of chemicals and materials. Fuel, 1996, 75, 724-736.	6.4	65
128	Three-dimensional molecular basket sorbents for CO2 capture: Effects of pore structure of supports and loading level of polyethylenimine. Catalysis Today, 2014, 233, 100-107.	4.4	65
129	Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite. Journal of CO2 Utilization, 2018, 27, 81-88.	6.8	65
130	Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2019, 585, 117210.	4.3	65
131	Relationship between the Formation of Aromatic Compounds and Solid Deposition during Thermal Degradation of Jet Fuels in the Pyrolytic Regime. Energy & Fuels, 2001, 15, 714-723.	5.1	64
132	Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. Journal of Membrane Science, 2005, 249, 51-64.	8.2	64
133	Synthesis of magnetic porous Fe 3 O 4 /C/Cu 2 O composite as an excellent photo-Fenton catalyst under neutral condition. Journal of Colloid and Interface Science, 2016, 475, 119-125.	9.4	64
134	Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water–gas-shift reaction. Catalysis Today, 2005, 99, 347-357.	4.4	63
135	Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel. ACS Catalysis, 2012, 2, 1127-1137.	11.2	63
136	Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons. Journal of CO2 Utilization, 2018, 25, 330-337.	6.8	63
137	High-Temperature Stabilizers for Jet Fuels and Similar Hydrocarbon Mixtures. 1. Comparative Studies of Hydrogen Donors. Energy & Fuels, 1996, 10, 806-811.	5.1	62
138	Sulfur poisoning of CeO2–Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures. Applied Catalysis A: General, 2010, 390, 210-218.	4.3	62
139	Synthesis of yolk–shell HPW@Hollow silicalite-1 for esterification reaction. Chemical Communications, 2014, 50, 4846.	4.1	61
140	Ultra-deep Desulfurization of Liquid Hydrocarbon Fuels: Chemistry and Process. International Journal of Green Energy, 2004, 1, 167-191.	3.8	60
141	Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation. Applied Surface Science, 2017, 396, 78-84.	6.1	57
142	Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous and Mesoporous Materials, 2014, 196, 18-30.	4.4	56
143	Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene. Chemical Engineering Journal, 2014, 242, 211-219.	12.7	56
144	Hydrodeoxygenation of Guaiacol on Ru Catalysts: Influence of TiO ₂ –ZrO ₂ Composite Oxide Supports. Industrial & Engineering Chemistry Research, 2017, 56, 12070-12079.	3.7	56

#	Article	IF	CITATIONS
145	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	3.7	56
146	Effects of Monocarboxylic Acid Additives on Synthesizing Metal–Organic Framework NH ₂ -MIL-125 with Controllable Size and Morphology. Crystal Growth and Design, 2017, 17, 6586-6595.	3.0	55
147	Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO ₂ –TiO ₂ Binary Oxides. Industrial & Engineering Chemistry Research, 2019, 58, 1513-1524.	3.7	55
148	Catalytic Hydrodeoxygenation of Guaiacol over Palladium Catalyst on Different Titania Supports. Energy & Fuels, 2017, 31, 10858-10865.	5.1	54
149	The anti-sintering catalysts: Fe–Co–Zr polymetallic fibers for CO2 hydrogenation to C2= –C4= – hydrocarbons. Journal of CO2 Utilization, 2018, 23, 219-225.	rich 6.8	54
150	Effect of pore structure of nickel-molybdenum/alumina catalysts in hydrocracking of coal-derived and oil sand derived asphaltenes. Industrial & Engineering Chemistry Research, 1991, 30, 1726-1734.	3.7	53
151	Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 2010, 149, 52-61.	4.4	53
152	Airâ€promoted adsorptive desulfurization of diesel fuel over <scp>T</scp> iâ€ <scp>C</scp> e mixed metal oxides. AICHE Journal, 2015, 61, 631-639.	3.6	53
153	Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks. Nanoscale, 2015, 7, 9738-9745.	5.6	53
154	Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 2016, 1, 1034-1040.	3.5	53
155	Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Applied Catalysis B: Environmental, 2021, 284, 119700.	20.2	53
156	Shape-selective isopropylation of naphthalene. Reactivity of 2,6-diisopropylnaphthalene on dealuminated mordenites. Catalysis Today, 1996, 31, 19-25.	4.4	52
157	Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene. Journal of Molecular Catalysis A, 2003, 191, 67-74.	4.8	52
158	CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species. Catalysis Today, 2018, 316, 62-70.	4.4	52
159	Single Atomic Cu-N2 Catalytic Sites for Highly Active and Selective Hydroxylation of Benzene to Phenol. IScience, 2019, 22, 97-108.	4.1	52
160	Steam reforming of liquid hydrocarbon fuels for micro-fuel cells. Pre-reforming of model jet fuels over supported metal catalysts. Fuel Processing Technology, 2008, 89, 440-448.	7.2	51
161	Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO ₂ –CeO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2013, 52, 15746-15755.	3.7	51
162	CO 2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size. Journal of CO2 Utilization, 2017, 19, 202-208.	6.8	51

#	Article	IF	CITATIONS
163	Enhanced Catalytic Performance of Titanium Silicaliteâ€1 in Tuning the Crystal Size in the Range 1200–200 nm in a Tetrapropylammonium Bromide System. ChemCatChem, 2015, 7, 2660-2668.	3.7	50
164	Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm, 2015, 17, 7160-7168.	2.6	50
165	Surfactant-assisted synthesis of hierarchical NH ₂ -MIL-125 for the removal of organic dyes. RSC Advances, 2017, 7, 581-587.	3.6	50
166	Concurrent Manipulation of Out-of-Plane and Regional In-Plane Orientations of NH ₂ -UiO-66 Membranes with Significantly Reduced Anisotropic Grain Boundary and Superior H ₂ /CO ₂ Separation Performance. ACS Applied Materials & Interfaces, 2020, 12, 4494-4500.	8.0	50
167	Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons. Catalysis Today, 2021, 371, 162-170.	4.4	50
168	Computational Investigation of Fe–Cu Bimetallic Catalysts for CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2016, 120, 9364-9373.	3.1	49
169	Spectroscopic characterization and catalytic activity of Rh supported on CeO2-modified Al2O3 for low-temperature steam reforming of propane. Catalysis Today, 2016, 263, 22-34.	4.4	49
170	Increasing the selectivity to ethylene in the MTO reaction by enhancing diffusion limitation in the shell layer of SAPO-34 catalyst. Chemical Communications, 2018, 54, 3146-3149.	4.1	49
171	Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: Insights into the role of Co2+ and cocatalyst. Journal of CO2 Utilization, 2020, 38, 16-23.	6.8	49
172	Density functional theory study on adsorption of thiophene on TiO2 anatase (001) surfaces. Catalysis Today, 2010, 149, 218-223.	4.4	48
173	Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2–Al2O3 supported Ni and Rh catalysts. Applied Catalysis A: General, 2011, 394, 32-40.	4.3	48
174	Role of metal components in Pd–Cu bimetallic catalysts supported on CeO2 for the oxygen-enhanced water gas shift. Applied Catalysis B: Environmental, 2011, 105, 306-316.	20.2	48
175	Nanoporous molecular basket sorbent for NO2 and SO2 capture based on a polyethylene glycol-loaded mesoporous molecular sieve. Energy and Environmental Science, 2009, 2, 878.	30.8	47
176	Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol. Catalysis Today, 2010, 149, 196-201.	4.4	47
177	Mechanistic investigation of propylene epoxidation with H2O2 over TS-1: Active site formation, intermediate identification, and oxygen transfer pathway. Molecular Catalysis, 2017, 441, 150-167.	2.0	47
178	Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure. Applied Energy, 2020, 264, 114637.	10.1	47
179	In-situ XPS Study on the Reducibility of Pd-Promoted Cu/CeO2 Catalysts for the Oxygen-assisted Water-gas-shift Reaction. Topics in Catalysis, 2008, 49, 89-96.	2.8	46
180	Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene. Catalysis Today, 2010, 156, 69-73.	4.4	46

#	Article	IF	CITATIONS
181	CPMAS 13C NMR and pyrolysis-GC-MS studies of structure and liquefaction reactions of Montana subbituminous coal. Fuel Processing Technology, 1993, 34, 249-276.	7.2	45
182	CO2 hydrogenation to methanol on Pd Cu bimetallic catalysts with lower metal loadings. Catalysis Communications, 2019, 118, 10-14.	3.3	45
183	Pyrolysis of alkylcyclohexanes in or near the supercritical phase. Product distribution and reaction pathways. Fuel Processing Technology, 1996, 48, 1-27.	7.2	44
184	SO ₃ H-Functionalized Ionic Liquids for Selective Alkylation of <i>p</i> -Cresol with <i>tert</i> -Butanol. Industrial & Engineering Chemistry Research, 2008, 47, 5298-5303.	3.7	44
185	Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons. RSC Advances, 2014, 4, 8930.	3.6	44
186	Effects of Cesium Ions and Cesium Oxide in Side-Chain Alkylation of Toluene with Methanol over Cesium-Modified Zeolite X. Industrial & Engineering Chemistry Research, 2016, 55, 1849-1858.	3.7	44
187	Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catalysis Today, 2017, 297, 335-343.	4.4	44
188	Inâ€Plane Epitaxial Growth of Highly <i>c</i> â€Oriented NH ₂ â€MILâ€125(Ti) Membranes with Superior H ₂ /CO ₂ Selectivity. Angewandte Chemie, 2018, 130, 16320-16325.	2.0	44
189	Adsorption, Dissociation, and Spillover of Hydrogen over Au/TiO ₂ Catalysts: The Effects of Cluster Size and Metal–Support Interaction from DFT. Journal of Physical Chemistry C, 2018, 122, 17895-17916.	3.1	44
190	Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 2016, 45, 7952-7959.	3.3	43
191	Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis Today, 2021, 371, 142-149.	4.4	43
192	Shape-selective isopropylation of naphthalene over dealuminated mordenites. Increasing?-substitution selectivity by adding water. Catalysis Letters, 1996, 40, 59-65.	2.6	42
193	Tailoring of surface oxygenâ€containing functional groups and their effect on adsorptive denitrogenation of liquid hydrocarbons over activated carbon. AICHE Journal, 2013, 59, 1236-1244.	3.6	42
194	Characterization of Pd catalysts supported on USY zeolites with different SiO2/Al2O3 ratios for the hydrogenation of naphthalene in the presence of benzothiophene. Fuel Processing Technology, 2008, 89, 467-474.	7.2	41
195	TiO ₂ -Modified Pd/SiO ₂ for Catalytic Hydrodeoxygenation of Guaiacol. Energy & Fuels, 2016, 30, 6671-6676.	5.1	40
196	DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO ₂ over Fe-based catalysts. Physical Chemistry Chemical Physics, 2018, 20, 14694-14707.	2.8	40
197	Enhanced visible light photocatalytic non-oxygen coupling of amines to imines integrated with hydrogen production over Ni/CdS nanoparticles. Catalysis Science and Technology, 2018, 8, 5148-5154.	4.1	40
198	A new process for catalytic liquefaction of coal using dispersed MoS 2 catalyst generated in situ with added H 2 O. Fuel, 2000, 79, 249-261.	6.4	39

#	Article	IF	CITATIONS
199	Hydrodenitrogenation of Quinoline Catalyzed by MCM-41-Supported Nickel Phosphides. Energy & Fuels, 2007, 21, 554-560.	5.1	39
200	Role of CeO2 support for Pd-Cu bimetallic catalysts for oxygen-enhanced water gas shift. Applied Catalysis A: General, 2013, 456, 204-214.	4.3	39
201	Tailored Synthesis of ZSM-5 Nanosheets with Controllable <i>b</i> -Axis Thickness and Aspect Ratio: Strategy and Growth Mechanism. Chemistry of Materials, 2022, 34, 3217-3226.	6.7	39
202	Comparative Compositional Analysis of Untreated and Hydrotreated Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 2005, 19, 1072-1077.	5.1	38
203	Low-Temperature Removal of H2S by Nanoporous Composite of Polymerâ^'Mesoporous Molecular Sieve MCM-41 as Adsorbent for Fuel Cell Applications. Energy & Fuels, 2005, 19, 2214-2215.	5.1	38
204	Pd and Pd–CuO nanoparticles in hollow silicalite-1 single crystals for enhancing selectivity and activity for the Suzuki–Miyaura reaction. RSC Advances, 2015, 5, 40297-40302.	3.6	38
205	A computational study of adsorption and activation of CO 2 and H 2 over Fe(1 0 0) surface. Journal of CO2 Utilization, 2016, 15, 107-114.	6.8	38
206	Mesoporous/Microporous Titanium Silicalite with Controllable Pore Diameter for Cyclohexene Epoxidation. Industrial & Engineering Chemistry Research, 2018, 57, 512-520.	3.7	38
207	Higher Hydrocarbons Synthesis from CO2 Hydrogenation Over K- and La-Promoted Fe–Cu/TiO2 Catalysts. Topics in Catalysis, 2018, 61, 1551-1562.	2.8	38
208	Improving hydrogen storage/release properties of magnesium with nano-sized metal catalysts as measured by tapered element oscillating microbalance. Applied Catalysis A: General, 2006, 300, 130-138.	4.3	37
209	Shape-Selective Methylation of 2-Methylnaphthalene with Methanol over H-ZSM-5 Zeolite: A Computational Study. Journal of Physical Chemistry C, 2012, 116, 4071-4082.	3.1	37
210	Comparative Study of Molecular Basket Sorbents Consisting of Polyallylamine and Polyethylenimine Functionalized SBAâ€15 for CO 2 Capture from Flue Gas. ChemPhysChem, 2017, 18, 3163-3173.	2.1	37
211	Facile Construction of a Hollow In ₂ S ₃ /Polymeric Carbon Nitride Heterojunction for Efficient Visible-Light-Driven CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5942-5951.	6.7	37
212	A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chinese Journal of Catalysis, 2020, 41, 1198-1207.	14.0	37
213	Catalytic Oxidative Desulfurization of Diesel Fuels Using Air in a Two-Step Approach. Industrial & Engineering Chemistry Research, 2014, 53, 1890-1899.	3.7	36
214	DFT insight into the support effect on the adsorption and activation of key species over Co catalysts for CO2 methanation. Journal of CO2 Utilization, 2018, 24, 99-111.	6.8	36
215	New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: A case study of Fe/g-C3N4. Catalysis Today, 2021, 371, 58-63.	4.4	36
216	Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 2021, 8, .	2.3	36

#	Article	IF	CITATIONS
217	Effects of Drying and Oxidation of Wyodak Subbituminous Coal on Its Thermal and Catalytic Liquefaction.Spectroscopic Characterization and Products Distribution. Energy & Fuels, 1994, 8, 301-312.	5.1	35
218	Catalytic Coprocessing of Low-Density Polyethylene with VGO Using Metal Supported on Activated Carbon. Energy & Fuels, 2002, 16, 1301-1308.	5.1	35
219	Facile preparation of Sn-β zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose. Chinese Journal of Catalysis, 2014, 35, 723-732.	14.0	35
220	CO2 capture over molecular basket sorbents: Effects of SiO2 supports and PEG additive. Journal of Energy Chemistry, 2017, 26, 1030-1038.	12.9	35
221	Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. Journal of CO2 Utilization, 2018, 26, 160-170.	6.8	35
222	Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon toward High Selectivity of Light Olefins in CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 4017-4023.	3.7	35
223	Dynamic Evolution of Fe and Carbon Species over Different ZrO ₂ Supports during CO Prereduction and Their Effects on CO ₂ Hydrogenation to Light Olefins. ACS Sustainable Chemistry and Engineering, 2021, 9, 7891-7903.	6.7	35
224	Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 2022, 43, 731-754.	14.0	35
225	Conformational isomerization of cis-decahydronaphthalene over zeolite catalysts. Catalysis Today, 1996, 31, 171-181.	4.4	34
226	Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application. 2. Wash-Coated Monolith. Energy & Fuels, 2004, 18, 584-589.	5.1	34
227	Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis. International Journal of Hydrogen Energy, 2013, 38, 14415-14423.	7.1	34
228	Selective Removal of H ₂ S from Biogas Using Solid Amine-Based "Molecular Basket― Sorbent. Energy & Fuels, 2017, 31, 9517-9528.	5.1	34
229	A new method for preparing highly active unsupported Mo sulfide. Catalytic activity for hydrogenolysis of 4-(1-naphthylmethyl)bibenzyl. Catalysis Today, 1999, 50, 19-27.	4.4	33
230	A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catalysis Science and Technology, 2015, 5, 3159-3165.	4.1	33
231	Controllable assembly of single/double-thin-shell g-C ₃ N ₄ vesicles <i>via</i> a shape-selective solid-state templating method for efficient photocatalysis. Journal of Materials Chemistry A, 2019, 7, 17815-17822.	10.3	33
232	Catalytic and thermal degradation of high-density polyethylene in vacuum gas oil over non-acidic and acidic catalysts. Applied Catalysis A: General, 2003, 242, 51-62.	4.3	31
233	The promoting effects of alkali metal oxide in side-chain alkylation of toluene with methanol over basic zeolite X. Microporous and Mesoporous Materials, 2016, 234, 61-72.	4.4	31
234	Discovering Inherent Characteristics of Polyethylenimine-Functionalized Porous Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 36515-36524.	8.0	31

#	Article	IF	CITATIONS
235	Effects of aging on the synthesis and performance of silicalite membranes on silica tubes without seeding. Microporous and Mesoporous Materials, 2007, 102, 249-257.	4.4	30
236	Promoting Effect of TiO ₂ on the Hydrodenitrogenation Performance of Nickel Phosphide. Journal of Physical Chemistry C, 2008, 112, 16584-16592.	3.1	30
237	Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures. Frontiers of Chemical Science and Engineering, 2018, 12, 83-93.	4.4	30
238	Cr–doped ZnS semiconductor catalyst with high catalytic activity for hydrogen production from hydrogen sulfide in non-thermal plasma. Catalysis Today, 2019, 337, 83-89.	4.4	30
239	Microstructural optimization of NH2-MIL-125 membranes with superior H2/CO2 separation performance by innovating metal sources and heating modes. Journal of Membrane Science, 2020, 616, 118615.	8.2	30
240	Strong Synergistic Effect between Dispersed Mo Catalyst and H2O for Low-Severity Coal Hydroliquefaction. Energy & Fuels, 1995, 9, 188-189.	5.1	29
241	Adsorption separation of CO _{2 from simulated flue gas mixtures by novel CO_{2 "molecular basket" adsorbents. International Journal of Environmental Technology and Management, 2004, 4, 32.}}	0.2	29
242	Lignocellulosic Biomass Conversion by Sequential Combination of Organic Acid and Base Treatments. Energy & Fuels, 2010, 24, 3232-3238.	5.1	29
243	Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts. Chinese Journal of Catalysis, 2018, 39, 1821-1831.	14.0	29
244	Facile synthesis of mesoporous silica nanoparticles with controlled morphologies using water–acetone media. Solid State Sciences, 2010, 12, 267-273.	3.2	28
245	Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chemistry, 2013, 15, 1509.	9.0	28
246	Density functional theory study of propane steam reforming on Rh–Ni bimetallic surface: Sulfur tolerance and scaling/BrAֻnsted–Evans–Polanyi relations. Journal of Catalysis, 2014, 309, 248-259.	6.2	28
247	New molecular basket sorbents for CO2 capture based on mesoporous sponge-like TUD-1. Catalysis Today, 2014, 238, 95-102.	4.4	28
248	Effect of titanium ester on synthesizing NH2-MIL-125(Ti): Morphology changes from circular plate to octahedron and rhombic dodecahedron. Journal of Solid State Chemistry, 2018, 262, 237-243.	2.9	28
249	Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene. Journal of Energy Chemistry, 2018, 27, 1225-1230.	12.9	28
250	High-Loading Nickel Phosphide Catalysts Supported on SiO ₂ –TiO ₂ for Hydrodeoxygenation of Guaiacol. Energy & Fuels, 2019, 33, 7696-7704.	5.1	28
251	Fast and efficient upgrading of levulinic acid into long-chain alkyl levulinate fuel additives with a tungsten salt catalyst at low temperature. Sustainable Energy and Fuels, 2020, 4, 2018-2025.	4.9	28
252	CO ₂ Conversion and Utilization: An Overview. ACS Symposium Series, 2002, , 2-30.	0.5	27

#	Article	IF	CITATIONS
253	Preparation of Organic Sulfur Adsorbent from Coal for Adsorption of Dibenzothiophene-type Compounds in Diesel Fuel. Energy & Fuels, 2009, 23, 2620-2627.	5.1	27
254	One-pot hydrothermal synthesis of mesoporous silica nanoparticles using formaldehyde as growth suppressant. Microporous and Mesoporous Materials, 2012, 152, 9-15.	4.4	27
255	Catalytic decomposition of benzothiophenic and dibenzothiophenic sulfones over MgO-based catalysts. Applied Catalysis B: Environmental, 2014, 148-149, 80-90.	20.2	27
256	Inorganic salt-assisted fabrication of graphitic carbon nitride with enhanced photocatalytic degradation of Rhodamine B. Materials Letters, 2017, 188, 130-133.	2.6	27
257	Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. Advances in Catalysis, 2019, , 121-233.	0.2	27
258	Computational and experimental identification of strong synergy of the Fe/ZnO catalyst in promoting acetic acid synthesis from CH ₄ and CO ₂ . Chemical Communications, 2020, 56, 3983-3986.	4.1	27
259	Selective Hydrogenation of CO ₂ to Hydrocarbons: Effects of Fe ₃ O ₄ Particle Size on Reduction, Carburization, and Catalytic Performance. Energy & Fuels, 2021, 35, 10703-10709.	5.1	27
260	Influence of pore structure and chemical properties of supported molybdenum catalysts on their performance in upgrading heavy coal liquids. Energy & Fuels, 1992, 6, 619-628.	5.1	26
261	Reaction mechanism of tert-butylation of phenol with tert-butyl alcohol over H-β zeolite: An ONIOM study. Catalysis Today, 2011, 165, 120-128.	4.4	26
262	Metal–Organic Framework-Derived Tubular In ₂ O ₃ –C/CdIn ₂ S ₄ Heterojunction for Efficient Solar-Driven CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20375-20384.	8.0	26
263	Promoting Propane Dehydrogenation with CO ₂ over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catalysis, 2022, 12, 6559-6569.	11.2	26
264	High-temperature simulated distillation GC analysis of petroleum resids and their products from catalytic upgrading over Co–Mo/Al2O3 catalyst. Catalysis Today, 1998, 43, 187-202.	4.4	25
265	Density Functional Theory Study on the Role of Ceria Addition in TixCe1–xO2 Adsorbents for Thiophene Adsorption. Journal of Physical Chemistry C, 2012, 116, 3457-3466.	3.1	25
266	Hydrotreatment of 4-(1-Naphthylmethyl)bibenzyl in the Presence of Iron Catalysts and Sulfur. Energy & Fuels, 1996, 10, 597-602.	5.1	24
267	Oligomerization of Biomass-Derived Light Olefins to Liquid Fuel: Effect of Alkali Treatment on the HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 12046-12055.	3.7	24
268	Crystallographic dependence of CO2 hydrogenation pathways over HCP-Co and FCC-Co catalysts. Applied Catalysis B: Environmental, 2022, 315, 121529.	20.2	24
269	Recent advance in shape-Selective catalysis over zeolites for synthesis of specialty chemicals. Studies in Surface Science and Catalysis, 1998, , 163-186.	1.5	23
270	Recent Advances in Catalysis for Hydrogen Production and Fuel Processing for Fuel Cells. Topics in Catalysis, 2008, 49, 1-3.	2.8	23

#	Article	IF	CITATIONS
271	New Strategy To Enhance CO ₂ Capture over a Nanoporous Polyethylenimine Sorbent. Energy & Fuels, 2014, 28, 7742-7745.	5.1	23
272	Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: Role of surface Ti and Ce cations. Catalysis Today, 2021, 371, 265-275.	4.4	23
273	One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: significance of catalyst-bed configuration. Green Chemistry, 2021, 23, 1642-1647.	9.0	23
274	SO ₃ H-Functionalized Ionic Liquid Catalyzed Alkylation of Catechol with <i>tert</i> -Butyl Alcohol. Industrial & Engineering Chemistry Research, 2010, 49, 8157-8163.	3.7	22
275	Role of Supports in the Tetrapropylammonium Hydroxide Treated Titanium Silicalite-1 Extrudates. Industrial & Engineering Chemistry Research, 2015, 54, 1513-1519.	3.7	22
276	Methanol Usage in Toluene Methylation over Pt Modified ZSM-5 Catalyst: Effects of Total Pressure and Carrier Gas. Industrial & amp; Engineering Chemistry Research, 2017, 56, 4709-4717.	3.7	22
277	Facile and green synthesis of TiN/C as electrode materials for supercapacitors. Applied Surface Science, 2019, 470, 241-249.	6.1	22
278	Influence of Diffusion and Acid Properties on Methane and Propane Selectivity in Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 1896-1905.	3.7	22
279	One-Step Low-Temperature Reduction of Sulfur Dioxide to Elemental Sulfur by Plasma-Enhanced Catalysis. ACS Catalysis, 2020, 10, 5272-5277.	11.2	22
280	Effect of Al Sources on the Synthesis and Acidic Characteristics of Mesoporous Aluminosilicates of MCM-41 Type. Studies in Surface Science and Catalysis, 1998, 117, 291-299.	1.5	21
281	Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane. Catalysis Today, 2009, 148, 232-242.	4.4	21
282	Synthesis of Silica Nanotubes with Orientation Controlled Mesopores in Porous Membranes via Interfacial Growth. Chemistry of Materials, 2012, 24, 1005-1010.	6.7	21
283	Mesostructure-tunable and size-controllable hierarchical porous silica nanospheres synthesized by aldehyde-modified Stöber method. RSC Advances, 2015, 5, 58355-58362.	3.6	21
284	The template-assisted zinc ion incorporation in SAPO-34 and the enhanced ethylene selectivity in MTO reaction. Journal of Energy Chemistry, 2019, 32, 174-181.	12.9	21
285	Mechanistic Insight into Propylene Epoxidation with H ₂ O ₂ over Titanium Silicalite-1: Effects of Zeolite Confinement and Solvent. Journal of Physical Chemistry B, 2019, 123, 7410-7423.	2.6	21
286	Plasma-assisted catalytic reduction of SO2 to elemental sulfur: Influence of nonthermal plasma and temperature on iron sulfide catalyst. Journal of Catalysis, 2020, 391, 260-272.	6.2	21
287	Hydrodeoxygenation of Guaiacol Catalyzed by ZrO ₂ –CeO ₂ -Supported Nickel Catalysts with High Loading. Energy & Fuels, 2020, 34, 4685-4692.	5.1	21
288	Short contact-time pyrolytic liquefaction of Wandoan subbituminous coal and catalytic upgrading of the SCT-SRCâ°†. Fuel, 1989, 68, 287-292.	6.4	20

#	Article	IF	CITATIONS
289	Bimetallic Dispersed Catalysts from Molecular Precursors Containing Mo-Co-S for Coal Liquefaction. Energy & Fuels, 1994, 8, 313-319.	5.1	20
290	Facile one-step synthesis of hierarchical porous carbon monoliths as superior supports of Fe-based catalysts for CO ₂ hydrogenation. RSC Advances, 2016, 6, 10831-10836.	3.6	20
291	Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization. RSC Advances, 2017, 7, 37915-37922.	3.6	20
292	Visible-light-initiated one-pot clean synthesis of nitrone from nitrobenzene and benzyl alcohol over CdS photocatalyst. Journal of Catalysis, 2019, 370, 97-106.	6.2	20
293	One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst. Journal of Materials Science and Technology, 2021, 76, 86-94.	10.7	20
294	Coal hydroliquefaction using MoCl3- and NiCl2-containing salts as catalysts: difference in catalysis between solid and molten catalysts. Fuel, 1986, 65, 922-926.	6.4	19
295	Influence of Calcination Temperature on the Stability of Fluorinated Nanosized HZSM-5 in the Methylation of Biphenyl. Catalysis Letters, 2006, 107, 209-214.	2.6	19
296	Facile fabrication of metal-free urchin-like g-C ₃ N ₄ with superior photocatalytic activity. RSC Advances, 2016, 6, 94496-94501.	3.6	19
297	[O]-induced reactive adsorptive desulfurization of liquid fuel over Ag X O@SBA-15 under ambient conditions. Chemical Engineering Science, 2017, 168, 225-234.	3.8	19
298	Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation. Molecular Catalysis, 2021, 514, 111870.	2.0	19
299	A Model System for the Study of Additives Designed to Enhance the Stability of Jet Fuels at Temperatures above 400 .degree.C. Energy & Fuels, 1994, 8, 839-845.	5.1	18
300	Ring-shift isomerization of sym-octahydrophenanthrene into sym-octahydroanthracene. Effects of zeolite catalysts and equilibrium compositions. Catalysis Today, 1996, 31, 145-161.	4.4	18
301	Enhancing Sulfur Tolerance of Pd Catalysts by Hydrogen Spillover with Two Different Zeolite Supports for Low-Temperature Hydrogenation of Aromatics. Energy & Fuels, 2014, 28, 6788-6792.	5.1	18
302	In Situ Aluminum Migration into Zeolite Framework during Methanol-To-Propylene Reaction: An Innovation To Design Superior Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 8190-8199.	3.7	18
303	Defect-Enriched N,O-Codoped Nanodiamond/Carbon Nanotube Catalysts for Styrene Production via Dehydrogenation of Ethylbenzene. ACS Applied Nano Materials, 2019, 2, 2152-2159.	5.0	18
304	Synthesis and Characterization of Fe-Substituted ZSM-5 Zeolite and Its Catalytic Performance for Alkylation of Benzene with Dilute Ethylene. Industrial & Engineering Chemistry Research, 2020, 59, 22413-22421.	3.7	18
305	Temperature-programmed liquefaction of a low-rank coal. Energy & Fuels, 1992, 6, 326-328.	5.1	17
306	Selective Conversion of Polycyclic Hydrocarbons to Specialty Chemicals over Zeolite Catalysts. Cattech, 2002, 6, 64-77.	2.2	17

18

#	Article	IF	CITATIONS
307	Stability of MCM-41-Supported CoMo Hydrotreating Catalysts. Catalysis Letters, 2003, 90, 131-135.	2.6	17
308	Shape-selective Fe-MFI catalyst for synthesis of 2,6-dimethylnaphthalene by methylation with methanol. Studies in Surface Science and Catalysis, 2007, 170, 1275-1282.	1.5	17
309	Advances in catalysis and processes for hydrogen production from ethanol reforming. Catalysis, 0, , 65-106.	1.0	17
310	Shape-selective methylation of 2-methylnaphthalene with methanol over hydrothermal treated HZSM-5 zeolite catalysts. Chemical Engineering Science, 2008, 63, 5298-5303.	3.8	17
311	Density functional theory study of sulfur tolerance of CO adsorption and dissociation on Rh–Ni binary metals. Applied Catalysis A: General, 2010, 389, 122-130.	4.3	17
312	The EBB and flow of US coal research 1970–2010 with a focus on academic institutions. Fuel, 2013, 105, 1-12.	6.4	17
313	Airâ€Promoted Adsorptive Desulfurization over Ti _{0.9} Ce _{0.1} O ₂ Mixed Oxides from Diesel Fuel under Ambient Conditions. ChemCatChem, 2013, 5, 3582-3586.	3.7	17
314	Capsuleâ€ S tructured Copper–Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2019, 12, 4916-4926.	6.8	17
315	Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. Journal of CO2 Utilization, 2019, 29, 179-195.	6.8	17
316	Mechanistic understanding of ethane dehydrogenation and aromatization over Zn/ZSM-5: effects of Zn modification and CO ₂ co-reactant. Catalysis Science and Technology, 2020, 10, 8359-8373.	4.1	17
317	CO2 hydrogenation to methanol over bimetallic Pd-Cu catalysts supported on TiO2-CeO2 and TiO2-ZrO2. Catalysis Today, 2020, 371, 150-150.	4.4	17
318	Catalytic Upgrading of SRC from Pyrolytic Coal Liquefaction and Hydrocracking of Polycyclic Aromatic Hydrocarbons. Bulletin of the Chemical Society of Japan, 1988, 61, 3788-3790.	3.2	16
319	Transition metal tetrachloroaluminate catalysts for probe reactions simulating petroleum resids upgrading. Fuel, 2000, 79, 295-303.	6.4	16
320	Title is missing!. Catalysis Letters, 2000, 65, 147-151.	2.6	16
321	Effects of SiO2/Al2O3, MgO modification and hydrothermal treatment on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methylbiphenyl with methanol. Applied Catalysis A: General, 2004, 261, 183-189.	4.3	16
322	Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO. Chinese Chemical Letters, 2007, 18, 1281-1284.	9.0	16
323	Oxidative Desulfurization of Crude Oil Incorporating Sulfone Decomposition by Alkaline Earth Metal Oxides. Energy & Fuels, 2013, 27, 6372-6376.	5.1	16
324	Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma. Green Chemistry, 2014, 16, 2619-2626.	9.0	16

#	Article	IF	CITATIONS
325	Kinetic characteristics of oxygen-enhanced water gas shift on CeO2-supported Pt–Cu and Pd–Cu bimetallic catalysts. Applied Catalysis A: General, 2015, 497, 31-41.	4.3	16
326	Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5, 29509-29512.	3.6	16
327	An S-scheme heterojunction constructed from α-Fe ₂ O ₃ and In-doped carbon nitride for high-efficiency CO ₂ photoreduction. Catalysis Science and Technology, 2022, 12, 1520-1529.	4.1	16
328	Zeolite-catalyzed ring-shift isomerization of sym-octahydrophenanthrene and conformational isomerization of cis-decahydronaphthalene. Microporous Materials, 1994, 2, 459-466.	1.6	15
329	Hydrodeoxygenation of O-containing polycyclic model compounds using a novel organometallic catalyst precursor. Catalysis Today, 1996, 31, 121-135.	4.4	15
330	Regioselective hydrogenation of 1-naphthol over supported Pt and Pd catalysts for producing high-temperature jet fuel stabilizer. Catalysis Today, 2001, 65, 59-67.	4.4	15
331	Active Sites on Ti–Ce Mixed Metal Oxides for Reactive Adsorption of Thiophene and Its Derivatives: A DFT Study. Journal of Physical Chemistry C, 2015, 119, 5903-5913.	3.1	15
332	Cu ₂ O Mediated Synthesis of Metal–Organic Framework UiO-66 in Nanometer Scale. Crystal Growth and Design, 2017, 17, 685-692.	3.0	15
333	New Approach to Enhance CO2 Capture of "Molecular Basket―Sorbent by Using 3-Aminopropyltriethoxysilane to Reshape Fumed Silica Support. Industrial & Engineering Chemistry Research, 2020, 59, 7267-7273.	3.7	15
334	Intermediate-induced repolymerization for constructing self-assembly architecture: Red crystalline carbon nitride nanosheets for notable hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121323.	20.2	15
335	Title is missing!. Catalysis Letters, 2003, 87, 25-29.	2.6	14
336	HDS and deep HDS activity of CoMoS-mesostructured clay catalysts. Catalysis Today, 2006, 116, 478-484.	4.4	14
337	Methylation of 2-Methylnaphthalene with Methanol over NH4F and Pt Modified HZSM-5 Catalysts. Chinese Journal of Chemical Engineering, 2010, 18, 742-749.	3.5	14
338	Enhanced Catalytic Activity on Post‧ynthesized Hollow Titanium Silicaliteâ€1 with High Titanium Content on the External Surface. ChemistrySelect, 2016, 1, 6160-6166.	1.5	14
339	Improved Catalytic Performance for 1-Butene Epoxidation over Titanium Silicalite-1 Extrudates by Using SBA-15 or Carborundum as Additives. Industrial & Engineering Chemistry Research, 2017, 56, 7462-7467.	3.7	14
340	Tuning the product selectivity of SAPO-18 catalysts in MTO reaction via cavity modification. Chinese Journal of Catalysis, 2019, 40, 477-485.	14.0	14
341	Stable Zn@ZSM-5 catalyst via a dry gel conversion process for methanol-to-aromatics reaction. Microporous and Mesoporous Materials, 2021, 312, 110696.	4.4	14
342	A refined design concept for sulfur-tolerant Pd catalyst supported on zeolite by shape-selective exclusion and hydrogen spillover for hydrogenation of aromatics. Journal of Catalysis, 2021, 403, 203-214.	6.2	14

#	Article	IF	CITATIONS
343	Synergistic Catalysis of the Synthesis of Ammonia with Co-Based Catalysts and Plasma: From Nanoparticles to a Single Atom. ACS Applied Materials & Interfaces, 2021, 13, 52498-52507.	8.0	14
344	Coke-resistant (PtÂ+ÂNi)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252, 117529.	3.8	14
345	Catalytic hydrocracking of phenanthrene over NiMo/Al2O3, CoMo/Al2O3 catalysts and metal-loaded Y-zeolites Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1990, 33, 413-417.	0.1	13
346	Promoting Effect of H2O Addition on Câ^'O Bond Cleavage and Hydrogenation of Dinaphthyl Ether over MoS2 Catalyst in Situ Generated from Ammonium Tetrathiomolybdate. Energy & Fuels, 2002, 16, 767-773.	5.1	13
347	Novel Nanoporous "Molecular Basket―Adsorbent for CO2 Capture. Studies in Surface Science and Catalysis, 2004, , 411-416.	1.5	13
348	BrÃ,nsted acid-catalyzed tert-butylation of phenol, o-cresol and catechol: A comparative computational study. Journal of Molecular Catalysis A, 2010, 332, 145-151.	4.8	13
349	pH swing adsorption process for ambient carbon dioxide capture using activated carbon black adsorbents and immobilized carbonic anhydrase biocatalysts. Applied Energy, 2020, 280, 116003.	10.1	13
350	Influence of Loading a Tertiary Amine on Activated Carbons and Effect of CO ₂ on Adsorptive H ₂ S Removal from Biogas. ACS Sustainable Chemistry and Engineering, 2020, 8, 9998-10008.	6.7	13
351	Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. Chinese Journal of Catalysis, 2021, 42, 2225-2233.	14.0	13
352	Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446, 137217.	12.7	13
353	Antiliquefaction: model systems for enhanced retrogressive crosslinking reactions under coal liquefaction conditions. Energy & Fuels, 1993, 7, 328-330.	5.1	12
354	Reactions of Dibenzothiophene with Hydrogen in the Presence of Selected Molybdenum, Iron, and Cobalt Compounds. Energy & Fuels, 1996, 10, 591-596.	5.1	12
355	Facile synthesis of B-MCM-41 with controlled morphologies using water–acetone media. Microporous and Mesoporous Materials, 2011, 139, 31-37.	4.4	12
356	A computational investigation of ring-shift isomerization of sym-octahydrophenanthrene to sym-octahydroanthracene catalyzed by acidic zeolites. Physical Chemistry Chemical Physics, 2012, 14, 16644.	2.8	12
357	Reaction Mechanism of Toluene Methylation with Dimethyl Carbonate or Methanol Catalyzed by H-ZSM-5. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1467-1478.	4.9	12
358	Evolution of iron species for promoting the catalytic performance of FeZSM-5 in phenol oxidation. RSC Advances, 2016, 6, 32789-32797.	3.6	12
359	Two-dimensional transition metal dichalcogenides as metal sources of metal–organic frameworks. Chemical Communications, 2018, 54, 3664-3667	4.1	12
360	Effect of surface structure and Pd doping of Fe catalysts on the selective hydrodeoxygenation of phenol. Catalysis Today, 2020, 371, 189-189.	4.4	12

#	Article	IF	CITATIONS
361	Plasma-enhanced catalytic reduction of SO2: Decoupling plasma-induced surface reaction from plasma-phase reaction. Applied Catalysis B: Environmental, 2021, 286, 119852.	20.2	12
362	Bimetallic dispersed sulfide catalysts from organometallic clusters for coal liquefaction. Catalysis Letters, 1993, 21, 27-34.	2.6	11
363	Shape-selective Isopropylation of Naphthalene over Hydrogen-Mordenite Catalysts. Effect of Mordenite Dealumination Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1999, 42, 287-298.	0.1	11
364	Preparation of High-Performance Adsorbent from Coal for Adsorptive Denitrogenation of Liquid Hydrocarbon Streams. Energy & Fuels, 2013, 27, 1337-1346.	5.1	11
365	Oxalic Acid Modification of β Zeolite for Dehydration of 2-(4′-Ethylbenzoyl) Benzoic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 8850-8856.	3.7	11
366	Cobalt oxide with flake-like morphology as efficient passive NOx adsorber. Catalysis Communications, 2021, 149, 106203.	3.3	11
367	Co-Promoted In ₂ O ₃ /ZrO ₂ Integrated with Ultrathin Nanosheet HZSM-5 as Efficient Catalysts for CO ₂ Hydrogenation to Gasoline. Industrial & Engineering Chemistry Research, 2022, 61, 6322-6332.	3.7	11
368	Catalytic Effects of MoCl3- and NiCl2-Containing Molten Salts for Hydroliquefaction of Morwell Brown and Taiheiyo Subbituminous Coals. Bulletin of the Chemical Society of Japan, 1986, 59, 3643-3648.	3.2	10
369	Catalytic Hydrogenation and Cracking of Anthracene over MoCl3–LiCl–KCl and NiCl2–LiCl–KCl Salts. Bulletin of the Chemical Society of Japan, 1989, 62, 630-632.	3.2	10
370	Observation of Retrogressive Reactions under Liquefaction Conditions Utilizing the Oxidized Coal Completely Dissolved in Solvent at Room Temperature. Energy & Fuels, 1998, 12, 975-980.	5.1	10
371	Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization of Middle Distillates. , 2006, , 317-372.		10
372	Ab Initio Thermodynamics Examination of Sulfur Species Present on Rh, Ni, and Binary Rh–Ni Surfaces under Steam Reforming Reaction Conditions. Langmuir, 2012, 28, 5660-5668.	3.5	10
373	Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation. Nano Research, 2021, 14, 3294-3302.	10.4	10
374	Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst. Journal of CO2 Utilization, 2022, 59, 101967.	6.8	10
375	Elucidating the Active-Phase Evolution of Fe-Based Catalysts during Isobutane Dehydrogenation with and without CO ₂ in Feed Gas. ACS Catalysis, 2022, 12, 5930-5938.	11.2	10
376	Shape-selective isopropylation of naphthalene over H–mordenite catalysts for environmentally friendly synthesis of 2,6-dialkylnaphthalene. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 477-496.	0.1	9
377	Temperature-Programmed Retention Indices for GC and GC-MS of Hydrocarbon Fuels and Simulated Distillation GC of Heavy Oils. , 2003, , 147-210.		9
378	Shape-selective synthesis of 4,4′-dimethyl-biphenyl over modified ZSM-5 catalysts. Catalysis Today, 2004, 93-95, 411-416.	4.4	9

#	Article	IF	CITATIONS
379	Sequential Combination of Acid and Base for Conversion of Cellulose. Energy & Fuels, 2012, 26, 2376-2385.	5.1	9
380	Selectivity of Adsorption of Thiophene and its Derivatives on Titania Anatase Surfaces: A Density Functional Theory Study. Topics in Catalysis, 2012, 55, 229-242.	2.8	9
381	Mesoporous graphitic carbon nitride functionalized iron oxides for promoting phenol oxidation activity. RSC Advances, 2016, 6, 91960-91967.	3.6	9
382	In-situ X-ray absorption study of ceria-supported Pd-Cu nanoparticles for oxygen-enhanced water gas shift. Applied Catalysis A: General, 2016, 528, 67-73.	4.3	9
383	Coupling of LaFeO ₃ –Plasma Catalysis and Cu ⁺ /Cu ⁰ Electrocatalysis for Direct Ammonia Synthesis from Air. Industrial & Engineering Chemistry Research, 2022, 61, 4816-4823.	3.7	9
384	Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to <i>para</i> -xylene. Inorganic Chemistry Frontiers, 2022, 9, 3348-3358.	6.0	9
385	Performance of molybdenum trichloride-lithium chloride-potassium chloride and nickel dichloride-lithium chloride-potassium chloride catalysts in coal hydroliquefaction with a hydrogen donor vehicle. Energy & Fuels, 1988, 2, 639-644.	5.1	8
386	Synthesis and Catalytic Applications of Novel Mesoporous Aluminosilicate Molecular Sieves. Materials Research Society Symposia Proceedings, 1996, 454, 125.	0.1	8
387	A Proposed New Concept for Design of Sulfur-Resistant Noble Metal Catalysts Based on Shape-Selective Exclusion and Hydrogen Spillover. ACS Symposium Series, 1999, , 381-389.	0.5	8
388	Advances in the synthesis and catalysis of solid and hollow zeolite-encapsulated metal catalysts. Advances in Catalysis, 2018, 63, 75-115.	0.2	8
389	Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 14381-14396.	3.7	8
390	Mechanistic Insight into the Promotional Effect of CO ₂ on Propane Aromatization over Zn/ZSM-5. Industrial & Engineering Chemistry Research, 2022, 61, 10483-10495.	3.7	8
391	Catalytic effects of MoCl3- and NiCl2-containing molten salts in hydroliquefaction of Akabira bituminous coal with and without hydrogen-donor vehicle. Fuel, 1987, 66, 1225-1229.	6.4	7
392	Dehydration of 2-(4′-Ethylbenzoyl)-benzoic Acid to 2-Ethylanthraquinone over Hβ Zeolite Modified with Organic Acids. Chinese Journal of Catalysis, 2009, 30, 9-13.	14.0	7
393	A mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production. Catalysis Science and Technology, 2020, 10, 1048-1055.	4.1	7
394	Deep removal of SO2 from cathode air over polyethylenimine-modified SBA-15 sorbents for fuel cells. Catalysis Today, 2021, 371, 240-246.	4.4	7
395	Mechanistic Insight into the Hydrodeoxygenation of Hydroquinone over Au/ <i>a</i> -TiO ₂ Catalyst. Journal of Physical Chemistry C, 2021, 125, 6660-6672.	3.1	7
396	Promising Strategy to Synthesize ZSM-5@Silicalite-1 with Superior Catalytic Performance for Catalytic Cracking Reactions. Industrial & Engineering Chemistry Research, 2021, 60, 9098-9106.	3.7	7

#	Article	IF	CITATIONS
397	A Novel and Green Method for the Synthesis of Ionic Liquids Using the Corresponding Acidic Ionic Liquid Precursors and Dialkyl Carbonate. Chemistry Letters, 2010, 39, 1112-1113.	1.3	6
398	Role of Recrystallization in Alkaline Treatment on the Catalytic Activity of 1â€Butene Epoxidation. ChemCatChem, 2020, 12, 6196-6204.	3.7	6
399	Recent progress in synthesis and application of zeolite-encapsulated metal catalysts. Advances in Catalysis, 2020, 67, 91-133.	0.2	6
400	Adsorptive desulfurization of thiophene over Ti0.9Ce0.1O2 mixed oxide: A mechanistic study on the basis of XPS, in-situ FT-IR and TPD characterizations. Catalysis Today, 2020, , .	4.4	6
401	Regenerable solid molecular basket sorbents for selective SO2 capture from CO2-rich gas streams. Catalysis Today, 2021, 371, 231-239.	4.4	6
402	From nano aggregates to nano plates: The roles of gelatin in the crystallization of titanium silicate-1. Microporous and Mesoporous Materials, 2021, 321, 111100.	4.4	6
403	Fabrication of Isolated VOx Sites on Alumina for Highly Active and Stable Non-Oxidative Dehydrogenation. Journal of Physical Chemistry C, 2021, 125, 19229-19237.	3.1	6
404	Light-Enhanced Oxidative Adsorption Desulfurization of Diesel Fuel over TiO ₂ –ZrO ₂ Mixed Oxides. Energy & Fuels, 2021, 35, 17512-17521.	5.1	6
405	Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environmental Science: Nano, 2022, 9, 2388-2401.	4.3	6
406	Computational Analysis for Shape-Selective Alkylation of Naphthalene over Zeolite Catalysts. ACS Symposium Series, 1999, , 305-321.	0.5	5
407	Effects of Pressure on CO2Reforming of CH4over Ni/Na-Y and Ni/Al2O3Catalysts. ACS Symposium Series, 2002, , 258-274.	0.5	5
408	Title is missing!. Catalysis Letters, 2003, 87, 159-166.	2.6	5
409	Dynamic Measurement of Hydrogen Storage/Release Properties of Mg Doped with Pd Nanoparticles Using a Tapered-Element Oscillating Microbalance under Flow Conditions. Energy & Fuels, 2005, 19, 2107-2109.	5.1	5
410	Influence of surfactant-assisted synthesis and different operational parameters on photocatalytic performance of Cu2FeSnS4 particles. Surfaces and Interfaces, 2021, 24, 101134.	3.0	5
411	CO2 Hydrogenation to Olefin-Rich Hydrocarbons Over Fe-Cu Bimetallic Catalysts: An Investigation of Fe-Cu Interaction and Surface Species. Frontiers in Chemical Engineering, 2021, 3, .	2.7	5
412	Retrogressive reactions in catalytic coal liquefaction using dispersed MoS2. Coal Science and Technology, 1995, 24, 1215-1218.	0.0	4
413	Recent Progress in Selective Catalytic Conversion of Polycyclic Hydrocarbons over Zeolite Catalyst. ACS Symposium Series, 1999, , 248-259.	0.5	4
414	Catalysis in ultra-clean fuels production. Catalysis Today, 2005, 104, 1.	4.4	4

#	Article	IF	CITATIONS
415	Recent advances in catalytic production of hydrogen from renewable sources. Catalysis Today, 2007, 129, 263-264.	4.4	4
416	Fabrication of hollow spheres by dry-gel conversion and its application in the selective hydrodesulfurization of FCC gasoline. Journal of Colloid and Interface Science, 2013, 396, 112-119.	9.4	4
417	Isomerization Mechanismof Xylene Catalyzed by H-ZSM-5 Molecular Sieve. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 754-762.	4.9	4
418	Influence of Al Coordinates on Hierarchical Structure and T Atoms Redistribution during Base Leaching of ZSM-5. Industrial & Engineering Chemistry Research, 0, , .	3.7	4
419	Capture of CO2 from Concentrated Sources and the Atmosphere. , 2019, , 35-72.		4
420	Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons. Catalysis Today, 2020, 371, 221-221.	4.4	4
421	Computational Insights into the Hydrodeoxygenation of Phenolic Compounds over Pt–Fe Catalysts. Journal of Physical Chemistry C, 2021, 125, 14239-14252.	3.1	4
422	Computational understanding of Fe-Pt synergy in promoting guaiacol hydrodeoxygenation. Surface Science, 2022, 717, 121985.	1.9	4
423	Boosting the Production of Higher Alcohols from CO ₂ and H ₂ over Mn- and K-Modified Iron Carbide. Industrial & Engineering Chemistry Research, 2022, 61, 7266-7274.	3.7	4
424	Strong promoting effect of H2O on coal liquefaction using water-soluble and oil-soluble Mo catalyst precursors. Coal Science and Technology, 1995, , 1391-1394.	0.0	3
425	In situ regeneration of the thermal stabilizer benzyl alcohol via ethanol in simulated jet fuels above 400°C. Fuel Processing Technology, 1997, 50, 153-162.	7.2	3
426	Nonradical Reactions during Coal Conversion. A Search for Synchronous 1,4-Hydrogen Addition as a Precursor to Radical Reactions. Energy & Fuels, 2000, 14, 545-551.	5.1	3
427	Recent advances in fuel processing catalysts for fuel cell applications. Catalysis Today, 2005, 99, 255-256.	4.4	3
428	Recent Advances in Reforming Catalysis and Adsorption Desulfurization of Liquid Hydrocarbon Fuels for Fuel Cell Applications. Studies in Surface Science and Catalysis, 2007, 172, 67-72.	1.5	3
429	Adsorptive Pretreatment of Light Cycle Oil and Its Effect on Subsequent Hydrodesulfurization. ACS Symposium Series, 2011, , 33-54.	0.5	3
430	Synthesis of Diethyl Toluene Diamine by Zeolite-Catalyzed Ethylation of 2,4-Toluene Diamine. Industrial & Engineering Chemistry Research, 2015, 54, 7364-7372.	3.7	3
431	Recent advances in selective conversion of polycyclic hydrocarbons into specialty chemicals over zeolites. Catalysis, 0, , 272-322.	1.0	3

432 Introduction to Chemistry of Diesel Fuels. , 2020, , 1-60.

#	Article	IF	CITATIONS
433	Novel Mesoporous Co-Mo/MCM-41 Catalysts for Deep Hydrodesulfurization of Diesel Fuels. , 2020, , 139-156.		3
434	Effective adsorption of Ultra-dilute CO2 over Polyethyleneimine-based adsorbent for H2 purification. Separation and Purification Technology, 2022, 299, 121686.	7.9	3
435	Activity and selectivity of Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(I-Naphthylmethyl) bibenzyl. Coal Science and Technology, 1995, 24, 1327-1330.	0.0	2
436	NANOPOROUS CATALYSTS FOR SHAPE-SELECTIVE SYNTHESIS OF SPECIALTY CHEMICALS: A REVIEW OF SYNTHESIS OF 4,4'-DIALKYLBIPHENYL. Series on Chemical Engineering, 2004, , 623-648.	0.2	2
437	Preface: Recent Advances in Catalysis for Ultra Clean Fuels. Catalysis Today, 2010, 149, 1.	4.4	2
438	Novel shape-selective catalysts for synthesis of 4,4′-dimethylbiphenyl. Studies in Surface Science and Catalysis, 2000, , 3023-3028.	1.5	1
439	Effects of SiO2/Al2O3, MgO modification and hydrothermal treatment on shape-selectvity methylation of 4-methylbiphenyl with methanol over HZSM-5 zeolite catalysts. Studies in Surface Science and Catalysis, 2004, 154, 2247-2254.	1.5	1
440	Solid Oxide Fuel Cell Fueled by Diesel Reformate and Anaerobic Digester Gas. ECS Transactions, 2011, 35, 2867-2872.	0.5	1
441	Hollow Crystals: Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes (Adv. Funct. Mater. 48/2015). Advanced Functional Materials, 2015, 25, 7478-7478.	14.9	1
442	Use of CO2 as Source of Carbon for Energy-Rich Cn Products. , 2019, , 211-238.		1
443	Production of 5-Hydroxymethylfurfural from Inulin Catalyzed by Sulfonated Amorphous Carbon in an Ionic Liquid. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 686-692.	4.9	1
444	Properties of the Nano-Particle Fe-based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 1943-1950.	4.9	1
445	Reaction Mechanism of Methylation of 4-Methylbiphenyl with Methanol over H-ZSM-5 Zeolite. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 56-66.	4.9	1
446	Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. ACS Applied Materials & Interfaces, 2022, , .	8.0	1
447	Effect of Water on Biphenyl Methylation over Modified HZSM-5. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1073-1079.	4.9	0
448	Zirconium-promoted hydrothermal synthesis of hierarchical porous carbons with ordered cubic mesostructures under acidic aqueous conditions. RSC Advances, 2016, 6, 4343-4353.	3.6	0
449	Capsule‣tructured Copper–Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2019, 12, 4904-4904	6.8	0
450	Fuel processing for low- and high-temperature fuel cells. , 2005, , 53-89.		0

#	Article	IF	CITATIONS
451	Detergent Enzymes. , 2005, , 673-684.		0
452	Reaction mechanism of toluene <italic>tert</italic> -butylation with <italic>tert</italic> -Butyl alcohol over H-β and H-MOR zeolite: a QM/MM study. Scientia Sinica Chimica, 2020, 50, 384-392.	0.4	0