Patrick Weydt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neuroscience, 2015, 18, 631-636.	14.8	652
2	Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metabolism, 2006, 4, 349-362.	16.2	519
3	Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2015-311387.	1.9	207
4	Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Annals of Neurology, 2016, 79, 152-158.	5.3	188
5	Assessing disease onset and progression in the SOD1 mouse model of ALS. NeuroReport, 2003, 14, 1051-1054.	1.2	183
6	Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs, 2017, 31, 1057-1082.	5.9	182
7	Hot-spot KIF5A mutations cause familial ALS. Brain, 2018, 141, 688-697.	7.6	167
8	Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology, 2018, 90, e22-e30.	1.1	148
9	A single nucleotide polymorphism in the coding region of PGC- $1\hat{l}\pm$ is a male-specific modifier of Huntington disease age-at-onset in a large European cohort. BMC Neurology, 2014, 14, 1.	1.8	137
10	Increased cytotoxic potential of microglia from ALSâ€transgenic mice. Glia, 2004, 48, 179-182.	4.9	135
11	The gene coding for PGC-11 \pm modifies age at onset in Huntington's Disease. Molecular Neurodegeneration, 2009, 4, 3.	10.8	119
12	Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathologica, 2016, 132, 391-411.	7.7	116
13	Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1033-1041.	1.9	113
14	Mutual exacerbation of peroxisome proliferatorâ€activated receptor γ coactivator 1α deregulation and αâ€synuclein oligomerization. Annals of Neurology, 2015, 77, 15-32.	5.3	112
15	Assessing disease onset and progression in the SOD1 mouse model of ALS. NeuroReport, 2003, 14, 1051-1054.	1.2	105
16	<i>NEK1</i> mutations in familial amyotrophic lateral sclerosis. Brain, 2016, 139, e28-e28.	7.6	105
17	Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 4-10.	1.9	96
18	Endocannabinoids accumulate in spinal cord of SOD1 G93A transgenic mice. Journal of Neurochemistry, 2004, 89, 1555-1557.	3.9	93

#	Article	IF	CITATIONS
19	Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain, 2014, 137, 2938-2950.	7.6	91
20	Polyâ€ <scp>GP</scp> in cerebrospinal fluid links <i>C9orf72</i> â€associated dipeptide repeat expression to the asymptomatic phase of <scp>ALS</scp> / <scp>FTD</scp> . EMBO Molecular Medicine, 2017, 9, 859-868.	6.9	90
21	Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 239-247.	1.9	89
22	Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 182-184.	2.1	86
23	A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onsetâ€. Human Molecular Genetics, 2012, 21, 3461-3473.	2.9	85
24	Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience, 1996, 71, 601-611.	2.3	83
25	Comprehensive analysis of the mutation spectrum in 301 German ALS families. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 817-827.	1.9	80
26	Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. NeuroReport, 2005, 16, 527-531.	1.2	79
27	Survey of cannabis use in patients with amyotrophic lateral sclerosis. American Journal of Hospice and Palliative Medicine, 2004, 21, 95-104.	1.4	77
28	PGC-1Â is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 3477-3484.	2.9	74
29	Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Acta Neuropathologica, 2020, 139, 119-134.	7.7	73
30	Novel Blood-Based Biomarkers of Cognition, Stress, and Physical or Cognitive Training in Older Adults at Risk of Dementia: Preliminary Evidence for a Role of BDNF, Irisin, and the Kynurenine Pathway. Journal of Alzheimer's Disease, 2017, 59, 1097-1111.	2.6	68
31	Modafinil to treat fatigue in amyotrophic lateral sclerosis: An open label pilot study. American Journal of Hospice and Palliative Medicine, 2005, 22, 55-59.	1.4	65
32	The Role of PGC-1α in the Pathogenesis of Neurodegenerative Disorders. Current Drug Targets, 2010, 11, 1262-1269.	2.1	65
33	Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 2660.e15-2660.e20.	3.1	64
34	Action Potential-generating Cells in Human Glioblastomas. Journal of Neuropathology and Experimental Neurology, 1997, 56, 243-254.	1.7	59
35	Incidence and Geographical Variation of Amyotrophic Lateral Sclerosis (ALS) in Southern Germany – Completeness of the ALS Registry Swabia. PLoS ONE, 2014, 9, e93932.	2.5	47
36	A novel CHCHD10 mutation implicates a Mia40â€dependent mitochondrial import deficit in ALS. EMBO Molecular Medicine, 2018, 10, .	6.9	43

#	Article	IF	CITATIONS
37	Deficits in verbal fluency in presymptomatic <i>C9orf72</i> mutation gene carriers—a developmental disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1195-1200.	1.9	42
38	July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 471-474.	1.7	41
39	Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. Neurobiology of Disease, 2013, 58, 220-230.	4.4	40
40	Inflammatory mediators and growth factors in the spinal cord of G93A SOD1 rats. NeuroReport, 2004, 15, 2513-2516.	1.2	36
41	Activation of metabotropic glutamate receptors delays apoptosis of chick embryonic motor neurons in vitro. NeuroReport, 1998, 9, 2039-2043.	1.2	35
42	ALS-causing mutations differentially affect PGC- $1\hat{l}\pm$ expression and function in the brain vs. peripheral tissues. Neurobiology of Disease, 2017, 97, 36-45.	4.4	35
43	Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochemistry International, 2017, 110, 14-24.	3.8	34
44	Provision of assistive technology devices among people with ALS in Germany: a platform-case management approach. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 342-350.	1.7	33
45	Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with <i>C9orf72</i> hexanucleotide repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 503-511.	1.9	33
46	Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. Neuropharmacology, 2015, 91, 148-156.	4.1	32
47	Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS. Neuropharmacology, 2017, 124, 157-169.	4.1	32
48	The concept and diagnostic criteria of primary lateral sclerosis. Acta Neurologica Scandinavica, 2017, 136, 204-211.	2.1	32
49	Prodromal Huntington Disease as a Model for Functional Compensation of Early Neurodegeneration. PLoS ONE, 2014, 9, e114569.	2.5	32
50	Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington's disease. Scientific Reports, 2017, 7, 8513.	3.3	31
51	Comparison of Sirtuin 3 Levels in ALS and Huntington's Disease—Differential Effects in Human Tissue Samples vs. Transgenic Mouse Models. Frontiers in Molecular Neuroscience, 2017, 10, 156.	2.9	30
52	The metabolic and endocrine characteristics in spinal and bulbar muscular atrophy. Journal of Neurology, 2018, 265, 1026-1036.	3.6	29
53	Safety, tolerability, and preliminary efficacy of an IGF-1 mimetic in patients with spinal and bulbar muscular atrophy: a randomised, placebo-controlled trial. Lancet Neurology, The, 2018, 17, 1043-1052. –	10.2	28
54	Human central neurocytoma cells show neuronal physiological properties in vitro. Acta Neuropathologica, 1996, 91, 209-214.	7.7	22

#	Article	IF	CITATIONS
55	Current pharmacological management of amyotropic lateral sclerosis and a role for rational polypharmacy. Expert Opinion on Pharmacotherapy, 2004, 5, 735-746.	1.8	22
56	Targeting protein aggregation in neurodegeneration – lessons from polyglutamine disorders. Expert Opinion on Therapeutic Targets, 2006, 10, 505-513.	3.4	21
57	Can lesions to the motor cortex induce amyotrophic lateral sclerosis?. Journal of Neurology, 2014, 261, 283-290.	3.6	20
58	Screening for <i>CHCHD10</i> mutations in a large cohort of sporadic ALS patients: no evidence for pathogenicity of the p.P34S variant: Table 1. Brain, 2016, 139, e8-e8.	7.6	20
59	Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status. Journal of Neurology, 2018, 265, 3001-3008.	3.6	20
60	Routine Cerebrospinal Fluid (CSF) Parameters in Patients With Spinal Muscular Atrophy (SMA) Treated With Nusinersen. Frontiers in Neurology, 2019, 10, 1179.	2.4	18
61	Neuropathology of Partial PGC-1α Deficiency Recapitulates Features of Mitochondrial Encephalopathies but Not of Neurodegenerative Diseases. Neurodegenerative Diseases, 2013, 12, 177-188.	1.4	17
62	H2â€Dysphagia in huntington's disease (HD): a longitudinal, observational study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A57.1-A57.	1.9	17
63	Two-Point Magnitude MRI for Rapid Mapping of Brown Adipose Tissue and Its Application to the R6/2 Mouse Model of Huntington Disease. PLoS ONE, 2014, 9, e105556.	2.5	15
64	Clinical Trials in Spinal and Bulbar Muscular Atrophy—Past, Present, and Future. Journal of Molecular Neuroscience, 2016, 58, 379-387.	2.3	15
65	A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-sectional Validation Study. Journal of Medical Internet Research, 2022, 24, e32997.	4.3	15
66	Chitotriosidase as biomarker for early stage amyotrophic lateral sclerosis: a multicenter study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 276-286.	1.7	14
67	Development, Implementation, and Evaluation of a Movie-Based Curriculum to Teach Psychopathology. Teaching and Learning in Medicine, 2014, 26, 86-89.	2.1	13
68	Neuroligand-triggered calcium signalling in cultured human glioma cells. Neuroscience Letters, 1997, 228, 91-94.	2.1	12
69	High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function. PLoS ONE, 2017, 12, e0175248.	2.5	11
70	Cannabis: old medicine with new promise for neurological disorders. Current Opinion in Investigational Drugs, 2002, 3, 437-40.	2.3	11
71	Towards a European Registry and Biorepository for Patients with Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2016, 58, 394-400.	2.3	10
72	Teaching an old dog new tricks: serum troponin T as a biomarker in amyotrophic lateral sclerosis. Brain Communications, 2021, 3, fcab274.	3.3	10

#	Article	IF	CITATIONS
73	The Role of Microglial Cells in Amyotrophic Lateral Sclerosis. Physical Medicine and Rehabilitation Clinics of North America, 2005, 16, 1081-1090.	1.3	8
74	Telomere length as a modifier of age-at-onset in Huntington disease: a two-sample Mendelian randomization study. Journal of Neurology, 2018, 265, 2149-2151.	3.6	8
75	The psychopharmacology of Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 179-189.	1.8	8
76	Thermoregulation in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 749-760.	1.8	7
77	Effect of Body Weight on Age at Onset in Huntington Disease. Neurology: Genetics, 2021, 7, e603.	1.9	7
78	Hypogonadism and Gynecomastia with Duloxetine. Pharmacopsychiatry, 2011, 44, 77-77.	3.3	6
79	Thermoregulatory disorders in Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 761-775.	1.8	6
80	Targeting toxic proteins for turnover. Nature Medicine, 2005, 11, 1052-1053.	30.7	5
81	Skeletal Muscle in Amyotrophic Lateral Sclerosis: Emerging Concepts and Therapeutic Implications. Physical Medicine and Rehabilitation Clinics of North America, 2005, 16, 1091-1097.	1.3	5
82	Progranulin Bridges Energy Homeostasis and Fronto-Temporal Dementia. Cell Metabolism, 2012, 15, 269-270.	16.2	4
83	Drug therapy for amyotrophic lateral sclerosis: Where are we now?. IDrugs: the Investigational Drugs Journal, 2003, 6, 147-53.	0.7	4
84	Electrodiagnostic evaluation of hereditary motor and sensory neuropathies. Physical Medicine and Rehabilitation Clinics of North America, 2003, 14, 347-363.	1.3	3
85	Full-length PGC-1α salvages the phenotype of a mouse model of human neuropathy through mitochondrial proliferation. Human Molecular Genetics, 2013, 22, 5096-5106.	2.9	3
86	Austrian body pleads for normal contacts despite EU freeze. Nature, 2000, 403, 691-691.	27.8	2
87	Myositis associated with localized lipodystrophy: an unrecognized condition?. European Journal of Medical Research, 2009, 14, 228-30.	2.2	2
88	Use and subjective experience of the impact of motor-assisted movement exercisers in people with amyotrophic lateral sclerosis: a multicenter observational study. Scientific Reports, 2022, 12, .	3.3	2
89	Biomedical centre memorial to victims of Nazi research. Nature, 2000, 403, 816-816.	27.8	1
90	German research agency stifles creativity. Nature, 2000, 404, 217-217.	27.8	1

#	Article	IF	CITATIONS
91	Frustration grows over EU grant application procedures. Nature, 2000, 404, 695-695.	27.8	1
92	Genetische Diagnostik der amyotrophen Lateralsklerose. Medizinische Genetik, 2013, 25, 352-357.	0.2	1
93	Reply: Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations. Brain, 2019, 142, e67-e67.	7.6	1
94	Genotypes of amyotrophic lateral sclerosis in Mongolia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1300-1302.	1.9	1
95	H31â€Dysphagia in huntington´s disease – an observational study. , 2018, , .		1
96	Etiology, Pathology, and Pathogenesis. Blue Books of Neurology, 2010, , 417-431.	0.1	0
97	Monocyte subtypes in ALS. Journal of Neuroimmunology, 2014, 275, 94.	2.3	0
98	B30â€Integrated mitochondrial function in human fine-needle muscle biopsies of huntington's disease mutation carriers and in tissues of HdhQ111 mice. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A19.3-A20.	1.9	0
99	B21â€Ribosomal transcription is regulated by PGC-1alpha and disturbed in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A16.2-A16.	1.9	0
100	H33â€The swallowing disorder in huntington's disease (hd): an observational study – nutritional aspects. , 2018, , .		0
101	H32â€Neuronal correlates and clinical predictors for dysphagia in huntington's disease. , 2018, , .		0