Magnus Monné

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303428/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial transport and metabolism of the vitamin Bâ€derived cofactors thiamine pyrophosphate, coenzyme A, <scp>FAD</scp> and <scp>NAD</scp> ⁺ , and related diseases: A review. IUBMB Life, 2022, 74, 592-617.	3.4	19
2	Evidence for Non-Essential Salt Bridges in the M-Gates of Mitochondrial Carrier Proteins. International Journal of Molecular Sciences, 2022, 23, 5060.	4.1	6
3	Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor Sâ€adenosylmethionine, and related diseases: A review ^{â€} . IUBMB Life, 2022, 74, 573-591.	3.4	7
4	Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules, 2021, 11, 880.	4.0	18
5	Screening of in vitro and in silico α-amylase, α-glucosidase, and lipase inhibitory activity of oxyprenylated natural compounds and semisynthetic derivatives. Phytochemistry, 2021, 187, 112781.	2.9	9
6	Design and structural bioinformatic analysis of polypeptide antigens useful for the SRLV serodiagnosis. Journal of Virological Methods, 2021, 297, 114266.	2.1	2
7	Two Novel Precursors of the HIV-1 Protease Inhibitor Darunavir Target the UPR/Proteasome System in Human Hepatocellular Carcinoma Cell Line HepG2. Cells, 2021, 10, 3052.	4.1	3
8	Chemical Profiling of <i>Astragalus membranaceus</i> Roots (Fish.) Bunge Herbal Preparation and Evaluation of Its Bioactivity. Natural Product Communications, 2020, 15, 1934578X2092415.	0.5	9
9	Phytochemicals of Minthostachys diffusa Epling and Their Health-Promoting Bioactivities. Foods, 2020, 9, 144.	4.3	8
10	Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules, 2020, 10, 655.	4.0	70
11	The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 724-733.	1.0	35
12	Mitochondrial Carriers for Aspartate, Glutamate and Other Amino Acids: A Review. International Journal of Molecular Sciences, 2019, 20, 4456.	4.1	40
13	Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. Journal of Biological Chemistry, 2018, 293, 4213-4227.	3.4	81
14	An overview of combined Dâ€2―and Lâ€2â€hydroxyglutaric aciduria: functional analysis of CIC variants. Journal of Inherited Metabolic Disease, 2018, 41, 169-180.	3.6	24
15	Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. Journal of Bioenergetics and Biomembranes, 2017, 49, 369-380.	2.3	13
16	Extracellular matrix degradation via enolase/plasminogen interaction: Evidence for a mechanism conserved in Metazoa. Biology of the Cell, 2016, 108, 161-178.	2.0	12
17	New insights into the roles of the N-terminal region of the ABCC6 transporter. Journal of Bioenergetics and Biomembranes, 2016, 48, 259-267.	2.3	23
18	Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2362-2378.	4.1	179

Magnus Monné

#	Article	IF	CITATIONS
19	Membrane insertion and topology of the aminoâ€terminal domain TMD0 of multidrugâ€resistance associated protein 6 (MRP6). FEBS Letters, 2015, 589, 3921-3928.	2.8	22
20	Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids, 2015, 47, 1763-1777.	2.7	30
21	Functional characterization and organ distribution of three mitochondrial ATP–Mg/Pi carriers in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1220-1230.	1.0	33
22	The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet Journal of Rare Diseases, 2015, 10, 29.	2.7	65
23	Intra-mitochondrial Methylation Deficiency Due to Mutations in SLC25A26. American Journal of Human Genetics, 2015, 97, 761-768.	6.2	58
24	Antiporters of the Mitochondrial Carrier Family. Current Topics in Membranes, 2014, 73, 289-320.	0.9	62
25	The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids. Developmental and Comparative Immunology, 2014, 47, 129-139.	2.3	9
26	The mitochondrial oxoglutarate carrier: from identification to mechanism. Journal of Bioenergetics and Biomembranes, 2013, 45, 1-13.	2.3	40
27	The substrate specificity of mitochondrial carriers: Mutagenesis revisited. Molecular Membrane Biology, 2013, 30, 149-159.	2.0	21
28	The hepatitis B x antigen antiâ€apoptotic effector URG7 is localized to the endoplasmic reticulum membrane. FEBS Letters, 2013, 587, 3058-3062.	2.8	11
29	Substrate Specificity of the Two Mitochondrial Ornithine Carriers Can Be Swapped by Single Mutation in Substrate Binding Site. Journal of Biological Chemistry, 2012, 287, 7925-7934.	3.4	47
30	The nucleotide-binding domain 2 of the human transporter protein MRP6. Journal of Bioenergetics and Biomembranes, 2011, 43, 465-471.	2.3	17
31	A Structural View of Egg Coat Architecture and Function in Fertilization1. Biology of Reproduction, 2011, 85, 661-669.	2.7	77
32	The Molecular Basis of Sex: Linking Yeast to Human. Molecular Biology and Evolution, 2011, 28, 1963-1966.	8.9	41
33	Insights into Egg Coat Assembly and Egg-Sperm Interaction from the X-Ray Structure of Full-Length ZP3. Cell, 2010, 143, 404-415.	28.9	132
34	Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature, 2008, 456, 653-657.	27.8	120
35	The Mimivirus Genome Encodes a Mitochondrial Carrier That Transports dATP and dTTP. Journal of Virology, 2007, 81, 3181-3186.	3.4	34
36	The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10830-10834.	7.1	90

Magnus Monné

#	Article	IF	CITATIONS
37	Tracking Down the ZP Domain: From the Mammalian Zona Pellucida to the Molluscan Vitelline Envelope. Seminars in Reproductive Medicine, 2006, 24, 204-216.	1.1	54
38	Functional expression of eukaryotic membrane proteins inLactococcus lactis. Protein Science, 2005, 14, 3048-3056.	7.6	78
39	Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology, 2005, 7, 1224-1231.	10.3	333
40	Eukaryotic membrane protein overproduction in. Current Opinion in Biotechnology, 2005, 16, 546-551.	6.6	59
41	Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function. Regulatory Peptides, 2005, 127, 45-53.	1.9	71
42	Competition between neighboring topogenic signals during membrane protein insertion into the ER. FEBS Journal, 2005, 272, 28-36.	4.7	12
43	Competition between neighboring topogenic signals during membrane protein insertion into the ER. FEBS Journal, 2004, 272, 28-36.	4.7	20
44	Stopâ€ŧransfer efficiency of marginally hydrophobic segments depends on the length of the carboxyâ€ŧerminal tail. EMBO Reports, 2003, 4, 178-183.	4.5	14
45	Topology of the Membrane-Associated Hepatitis C Virus Protein NS4B. Journal of Virology, 2003, 77, 5428-5438.	3.4	175
46	Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2002, 277, 23447-23452.	3.4	53
47	Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N and C-terminal flanking regions 1 1Edited by F. Cohen. Journal of Molecular Biology, 2001, 313, 1171-1179.	4.2	17
48	Effects of â€~hydrophobic mismatch' on the location of transmembrane helices in the ER membrane. FEBS Letters, 2001, 496, 96-100.	2.8	20
49	N-Tail translocation in a eukaryotic polytopic membrane protein. Synergy between neighboring transmembrane segments. FEBS Journal, 1999, 263, 264-269.	0.2	27
50	A turn propensity scale for transmembrane helices. Journal of Molecular Biology, 1999, 288, 141-145.	4.2	92
51	Turns in transmembrane helices: determination of the minimal length of a "helical hairpin―and derivation of a fine-grained turn propensity scale 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 293, 807-814.	4.2	95
52	Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. Journal of Molecular Biology, 1998, 284, 1177-1183.	4.2	101
53	Membrane Topology of the 60-kDa Oxa1p Homologue fromEscherichia coli. Journal of Biological Chemistry, 1998, 273, 30415-30418.	3.4	86