Samuel D Rabkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303376/publications.pdf Version: 2024-02-01

SAMILEL D. PARKIN

#	Article	IF	CITATIONS
1	Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clinical Cancer Research, 2021, 27, 889-902.	7.0	41
2	The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy?. Expert Opinion on Drug Discovery, 2021, 16, 391-410.	5.0	20
3	Growth, Purification, and Titration of Oncolytic Herpes Simplex Virus. Journal of Visualized Experiments, 2021, , .	0.3	Ο
4	In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses, 2021, 13, 1740.	3.3	15
5	Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathologica Communications, 2020, 8, 221.	5.2	26
6	Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. , 2020, 8, e000345.		30
7	Immunohistochemistry for Tumor-Infiltrating Immune Cells After Oncolytic Virotherapy. Methods in Molecular Biology, 2020, 2058, 179-190.	0.9	12
8	A Monoclonal Antibody Against \hat{l}^21 Integrin Inhibits Proliferation and Increases Survival in an Orthotopic Model of High-Grade Meningioma. Targeted Oncology, 2019, 14, 479-489.	3.6	12
9	A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nature Communications, 2019, 10, 2880.	12.8	42
10	Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications, 2019, 10, 2910.	12.8	77
11	Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncolmmunology, 2019, 8, e1591875.	4.6	78
12	Oncolytic Herpes Simplex Virus and PI3K Inhibitor BKM120 Synergize to Promote Killing of Prostate Cancer Stem-like Cells. Molecular Therapy - Oncolytics, 2019, 13, 58-66.	4.4	20
13	Triple threat to cancer: rationale for combining oncolytic viruses, MEK inhibitors, and immune checkpoint blockade. Oncolmmunology, 2019, 8, e1571390.	4.6	1
14	TMIC-25. MODIFICATION OF EXTRACELLULAR MATRIX ENHANCES ONCOLYTIC ADENOVIRUS IMMUNOTHERAPY IN GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi252-vi253.	1.2	0
15	Genetically distinct glioma stem-like cell xenografts established from paired glioblastoma samples harvested before and after molecularly targeted therapy. Scientific Reports, 2019, 9, 139.	3.3	9
16	Multi-parametric flow cytometry staining procedure for analyzing tumor-infiltrating immune cells following oncolytic herpes simplex virus immunotherapy in intracranial glioblastoma. Journal of Biological Methods, 2019, 6, e112.	0.6	8
17	Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clinical Cancer Research, 2018, 24, 3409-3422.	7.0	44
18	Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. Annual Review of Cancer Biology, 2018, 2, 155-173.	4.5	29

#	Article	IF	CITATIONS
19	EXTH-20. HISTONE DEACETYLASE INHIBITOR ENHANCES ONCOLYTIC HERPES SIMPLEX VIRUS THERAPY FOR MALIGNANT MENINGIOMA. Neuro-Oncology, 2018, 20, vi89-vi89.	1.2	0
20	MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Science Translational Medicine, 2018, 10, .	12.4	97
21	Restriction of Replication of Oncolytic Herpes Simplex Virus with a Deletion of γ34.5 in Glioblastoma Stem-Like Cells. Journal of Virology, 2018, 92, .	3.4	26
22	Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy, 2018, 10, 779-786.	2.0	58
23	Rad51 Degradation: Role in Oncolytic Virus—Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma. Journal of the National Cancer Institute, 2017, 109, 1-13.	6.3	35
24	Blockade of transforming growth factorâ€Î² signaling enhances oncolytic herpes simplex virus efficacy in patientâ€derived recurrent glioblastoma models. International Journal of Cancer, 2017, 141, 2348-2358.	5.1	33
25	Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell, 2017, 32, 253-267.e5.	16.8	430
26	Curing glioblastoma: oncolytic HSV-IL12 and checkpoint blockade. Oncoscience, 2017, 4, 67-69.	2.2	16
27	Prospects and progress of oncolytic viruses for treating peripheral nerve sheath tumors. Expert Opinion on Orphan Drugs, 2016, 4, 129-138.	0.8	8
28	Oncolytic herpes simplex virus interactions with the host immune system. Current Opinion in Virology, 2016, 21, 26-34.	5.4	44
29	A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro-Oncology, 2016, 18, 1278-1287.	1.2	25
30	Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma. American Journal of Cancer Research, 2016, 6, 300-11.	1.4	7
31	Designing herpes viruses as oncolytics. Molecular Therapy - Oncolytics, 2015, 2, 15010.	4.4	76
32	Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment. Journal of Neuropathology and Experimental Neurology, 2015, 74, 710-722.	1.7	32
33	Current Status of Gene Therapy for Brain Tumorsâ^—. , 2015, , 305-323.		1
34	Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma. Journal of Neuro-Oncology, 2015, 121, 91-100.	2.9	30
35	Exploring the antitumor effect of virus in malignant glioma. Drugs of the Future, 2015, 40, 0739.	0.1	25
36	Immunovirotherapy for the treatment of glioblastoma. OncoImmunology, 2014, 3, e27218.	4.6	14

#	Article	IF	CITATIONS
37	Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta. Cancer Cell International, 2014, 14, 83.	4.1	20
38	Immunovirotherapy for glioblastoma. Cell Cycle, 2014, 13, 175-176.	2.6	9
39	Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro-Oncology, 2014, 16, 1057-1066.	1.2	29
40	Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell, 2014, 157, 580-594.	28.9	751
41	Oncolytic Viruses and Their Application to Cancer Immunotherapy. Cancer Immunology Research, 2014, 2, 295-300.	3.4	308
42	Combination of Oncolytic Herpes Simplex Viruses Armed with Angiostatin and IL-12 Enhances Antitumor Efficacy in Human Glioblastoma Models. Neoplasia, 2013, 15, 591-599.	5.3	65
43	An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports, 2013, 3, 1567-1579.	6.4	236
44	Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12006-12011.	7.1	180
45	Multimechanistic Tumor Targeted Oncolytic Virus Overcomes Resistance in Brain Tumors. Molecular Therapy, 2013, 21, 68-77.	8.2	46
46	Current status of gene therapy for brain tumors. Translational Research, 2013, 161, 339-354.	5.0	53
47	Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncology, 2013, 2, 129-142.	3.0	26
48	Oncolytic herpes simplex virus treatment of metastatic breast cancer. International Journal of Oncology, 2012, 40, 757-63.	3.3	17
49	Oncolytic Virus-Mediated Manipulation of DNA Damage Responses: Synergy With Chemotherapy in Killing Glioblastoma Stem Cells. Journal of the National Cancer Institute, 2012, 104, 42-55.	6.3	103
50	Oncolytic Herpes Simplex Virus Counteracts the Hypoxia-Induced Modulation of Glioblastoma Stem-Like Cells. Stem Cells Translational Medicine, 2012, 1, 322-332.	3.3	33
51	Bevacizumab With Angiostatin-armed oHSV Increases Antiangiogenesis and Decreases Bevacizumab-induced Invasion in U87 Glioma. Molecular Therapy, 2012, 20, 37-45.	8.2	60
52	Effect of Î ³ 34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 2012, 86, 4420-4431.	3.4	85
53	Expression of FMS-like Tyrosine Kinase 3 Ligand by Oncolytic Herpes Simplex Virus Type I Prolongs Survival in Mice Bearing Established Syngeneic Intracranial Malignant Glioma. Neurosurgery, 2012, 71, 741-748.	1.1	35
54	Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncology, 2012, 14, 132-144.	1.2	185

#	Article	IF	CITATIONS
55	Enhanced Antitumor Efficacy of Low-Dose Etoposide with Oncolytic Herpes Simplex Virus in Human Glioblastoma Stem Cell Xenografts. Clinical Cancer Research, 2011, 17, 7383-7393.	7.0	73
56	Cancer Stem Cell-Like Cells Derived from Malignant Peripheral Nerve Sheath Tumors. PLoS ONE, 2011, 6, e21099.	2.5	43
57	A Novel Oncolytic Herpes Simplex Virus that Synergizes with Phosphoinositide 3-kinase/Akt Pathway Inhibitors to Target Glioblastoma Stem Cells. Clinical Cancer Research, 2011, 17, 3686-3696.	7.0	73
58	Distinguishing Inflammation from Tumor and Peritumoral Edema by Myeloperoxidase Magnetic Resonance Imaging. Clinical Cancer Research, 2011, 17, 4484-4493.	7.0	34
59	Directed evolution of adeno-associated virus for glioma cell transduction. Journal of Neuro-Oncology, 2010, 96, 337-347.	2.9	43
60	Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Therapy, 2010, 17, 805-810.	4.5	31
61	Identification of the ENT1 Antagonists Dipyridamole and Dilazep as Amplifiers of Oncolytic Herpes Simplex Virus-1 Replication. Cancer Research, 2010, 70, 3890-3895.	0.9	28
62	Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer?. Future Oncology, 2010, 6, 619-634.	2.4	52
63	Human Glioblastoma–Derived Cancer Stem Cells: Establishment of Invasive Glioma Models and Treatment with Oncolytic Herpes Simplex Virus Vectors. Cancer Research, 2009, 69, 3472-3481.	0.9	303
64	Hypoxia Enhances the Replication of Oncolytic Herpes Simplex Virus. Molecular Therapy, 2009, 17, 51-56.	8.2	64
65	Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Therapy, 2009, 16, 905-915.	4.5	24
66	Ras Signaling Influences Permissiveness of Malignant Peripheral Nerve Sheath Tumor Cells to Oncolytic Herpes. American Journal of Pathology, 2008, 173, 1861-1872.	3.8	31
67	Combination Immunotherapy for Tumors via Sequential Intratumoral Injections of Oncolytic Herpes Simplex Virus 1 and Immature Dendritic Cells. Clinical Cancer Research, 2008, 14, 7711-7716.	7.0	27
68	Trichostatin A and Oncolytic HSV Combination Therapy Shows Enhanced Antitumoral and Antiangiogenic Effects. Molecular Therapy, 2008, 16, 1041-1047.	8.2	74
69	Glioblastoma Hypoxia Promotes Oncolytic HSV Replication in vitro and in vivo. Neurosurgery, 2008, 62, 1423-1424.	1.1	Ο
70	Herpes Simplex Virus Us3(â^') Mutant as Oncolytic Strategy and Synergizes with Phosphatidylinositol 3-Kinase-Akt–Targeting Molecular Therapeutics. Clinical Cancer Research, 2007, 13, 5897-5902.	7.0	32
71	Angiogenic Response Caused by Oncolytic Herpes Simplex Virus–Induced Reduced Thrombospondin Expression Can Be Prevented by Specific Viral Mutations or by Administering a Thrombospondin-Derived Peptide. Cancer Research, 2007, 67, 440-444.	0.9	62
72	Systemic Therapy of Spontaneous Prostate Cancer in Transgenic Mice with Oncolytic Herpes Simplex Viruses. Cancer Research, 2007, 67, 9371-9379.	0.9	46

#	Article	IF	CITATIONS
73	Oncolytic herpes simplex virus therapy for peripheral nerve tumors. Neurosurgical Focus, 2007, 22, 1-6.	2.3	11
74	Treatment of Implantable NF2 Schwannoma Tumor Models with Oncolytic Herpes Simplex Virus G47î". Cancer Gene Therapy, 2007, 14, 460-467.	4.6	34
75	Flip-Flop HSV-BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases. BMC Biotechnology, 2006, 6, 40.	3.3	37
76	Effect of Chemotherapy-Induced DNA Repair on Oncolytic Herpes Simplex Viral Replication. Journal of the National Cancer Institute, 2006, 98, 38-50.	6.3	135
77	Systemic Oncolytic Herpes Virus Therapy of Poorly Immunogenic Prostate Cancer Metastatic to Lung. Clinical Cancer Research, 2006, 12, 2919-2927.	7.0	42
78	Dominant-Negative Fibroblast Growth Factor Receptor Expression Enhances Antitumoral Potency of Oncolytic Herpes Simplex Virus in Neural Tumors. Clinical Cancer Research, 2006, 12, 6791-6799.	7.0	72
79	Effective Treatment of Tumors with Strong β-Catenin/T-Cell Factor Activity by Transcriptionally Targeted Oncolytic Herpes Simplex Virus Vector. Cancer Research, 2006, 66, 10127-10135.	0.9	44
80	Treatment of Schwannomas with an Oncolytic Recombinant Herpes Simplex Virus in Murine Models of Neurofibromatosis Type 2. Human Gene Therapy, 2006, 17, 20-30.	2.7	36
81	Oncolytic HSV Armed with Platelet Factor 4, an Antiangiogenic Agent, Shows Enhanced Efficacy. Molecular Therapy, 2006, 14, 789-797.	8.2	77
82	Enhanced Replication of Oncolytic Herpes Simplex Virus in Glioma Cells that Evade Temozolomide Chemotherapy through DNA Repair. Neurosurgery, 2005, 57, 408-409.	1.1	0
83	Oncolytic Herpes Simplex Virus Vector Therapy of Breast Cancer in C3(1)/SV40 T-antigen Transgenic Mice. Cancer Research, 2005, 65, 1532-1540.	0.9	51
84	Oncolytic Herpes Simplex Virus Vector G47Δ in Combination with Androgen Ablation for the Treatment of Human Prostate Adenocarcinoma. Clinical Cancer Research, 2005, 11, 7886-7890.	7.0	57
85	Development of Oncolytic Replication-Competent Herpes Simplex Virus Vectors. , 2005, , 199-210.		2
86	Treatment of Schwannomas with an Oncolytic Recombinant Herpes Simplex Virus in Murine Models of Neurofibromatosis Type 2. Human Gene Therapy, 2005, .	2.7	2
87	Viral vectors as therapeutic agents for glioblastoma. Current Opinion in Molecular Therapeutics, 2005, 7, 419-30.	2.8	17
88	Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 2003, 424, 316-320.	27.8	302
89	Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Therapy, 2002, 9, 967-978.	4.6	235

90 Oncolytic Herpes Simplex Virus (G207) Therapy. , 2002, , 45-75.

#	Article	IF	CITATIONS
91	Therapeutic Efficacy of G207 in a Novel Peripheral Nerve Sheath Tumor Model. Experimental Neurology, 2001, 169, 64-71.	4.1	21
92	Ionizing Radiation Does Not Alter the Antitumor Activity of Herpes Simplex Virus Vector G207 in Subcutaneous Tumor Models of Human and Murine Prostate Cancer. Neoplasia, 2001, 3, 451-456.	5.3	48
93	Preclinical Safety Evaluation of G207, a Replication-Competent Herpes Simplex Virus Type 1, Inoculated Intraprostatically in Mice and Nonhuman Primates. Human Gene Therapy, 2001, 12, 999-1010.	2.7	67
94	Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors. Cancer Gene Therapy, 2000, 7, 939-946.	4.6	51
95	Clinical Mutations in the L1 Neural Cell Adhesion Molecule Affect Cell-Surface Expression. Journal of Neuroscience, 2000, 20, 5696-5702.	3.6	35
96	Tumor Growth Inhibition by Intratumoral Inoculation of Defective Herpes Simplex Virus Vectors Expressing Granulocyte–Macrophage Colony-Stimulating Factor. Molecular Therapy, 2000, 2, 324-329.	8.2	110
97	Viral Shedding and Biodistribution of G207, a Multimutated, Conditionally Replicating Herpes Simplex Virus Type 1, after Intracerebral Inoculation in Aotus. Molecular Therapy, 2000, 2, 588-595.	8.2	90
98	Attenuated, Replication-Competent Herpes Simplex Virus Type 1 Mutant G207: Safety Evaluation in Mice. Journal of Virology, 2000, 74, 3832-3841.	3.4	139
99	CNS INDUCED NEUROGENIC CYSTITIS IS ASSOCIATED WITH BLADDER MAST CELL DEGRANULATION IN THE RAT. Journal of Urology, 2000, 164, 852-855.	0.4	56
100	CNS INDUCED NEUROGENIC CYSTITIS IS ASSOCIATED WITH BLADDER MAST CELL DEGRANULATION IN THE RAT. Journal of Urology, 2000, 164, 852-855.	0.4	20
101	Local and Systemic Therapy of Human Prostate Adenocarcinoma with the Conditionally Replicating Herpes Simplex Virus Vector G207. Human Gene Therapy, 1999, 10, 2237-2243.	2.7	148
102	Corticosteroid Administration Does Not Affect Viral Oncolytic Activity, but Inhibits Antitumor Immunity in ReplicationCompetent Herpes Simplex Virus Tumor Therapy. Human Gene Therapy, 1999, 10, 2869-2878.	2.7	50
103	Replication-Competent Herpes Simplex Virus Vector G207 and Cisplatin Combination Therapy for Head and Neck Squamous Cell Carcinoma. Neoplasia, 1999, 1, 162-169.	5.3	104
104	Systemic Antitumor Immunity in Experimental Brain Tumor Therapy Using a Multimutated, Replication-Competent Herpes Simplex Virus. Human Gene Therapy, 1999, 10, 2741-2755.	2.7	193
105	Herpes Simplex Virus as an in Situ Cancer Vaccine for the Induction of Specific Anti-Tumor Immunity. Human Gene Therapy, 1999, 10, 385-393.	2.7	241
106	Attenuated, Replication-Competent Herpes Simplex Virus Type 1 Mutant G207: Safety Evaluation of Intracerebral Injection in Nonhuman Primates. Journal of Virology, 1999, 73, 6319-6326.	3.4	171
107	Novel synthesis and release of GABA in cerebellar granule cell cultures after infection with defective herpes simplex virus vectors expressing glutamic acid decarboxylase. Molecular Brain Research, 1998, 61, 121-135.	2.3	12
108	Treatment of Human Breast Cancer in a Brain Metastatic Model by G207, a Replication-Competent Multimutated Herpes Simplex Virus 1. Human Gene Therapy, 1998, 9, 2177-2185.	2.7	136

#	Article	IF	CITATIONS
109	Activation of CNS Circuits Producing a Neurogenic Cystitis: Evidence for Centrally Induced Peripheral Inflammation. Journal of Neuroscience, 1998, 18, 10016-10029.	3.6	69
110	GABA Synthesis in Astrocytes After Infection with Defective Herpes Simplex Virus Vectors Expressing Glutamic Acid Decarboxylase 65 or 67. Journal of Neurochemistry, 1998, 71, 2304-2312.	3.9	8
111	Co-expression of two gene products in the CNS using double-cassette defective herpes simplex virus vectors. Molecular Brain Research, 1996, 37, 317-323.	2.3	7
112	Expression of L1 in primary astrocytes via a defective herpes simplex virus vector promotes neurite outgrowth and neural cell migration. Molecular Brain Research, 1996, 43, 311-320.	2.3	13
113	Experimental Therapy for Malignant Brain Tumors Using Genetically Engineered Herpes Simplex Virus Type 1. , 1996, , 409-414.		0
114	Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. Journal of Neuro-Oncology, 1995, 23, 23-29.	2.9	45
115	Attenuated multi–mutated herpes simplex virus–1 for the treatment of malignant gliomas. Nature Medicine, 1995, 1, 938-943.	30.7	761
116	Brain Tumor Therapy Using Genetically Engineered Replication-Competent Virus. , 1995, , 259-274.		3
117	Mutant herpes simplex virus induced regression of tumors growing in immunocompetent rats. Journal of Neuro-Oncology, 1994, 19, 137-147.	2.9	60
118	Specific Patterns of Defective HSV-1 Gene Transfer in the Adult Central Nervous System: Implications for Gene Targeting. Experimental Neurology, 1994, 130, 127-140.	4.1	42
119	Preproenkephalin promoter yields region-specific and long-term expression in adult brain after direct in vivo gene transfer via a defective herpes simplex viral vector Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8979-8983.	7.1	165
120	Molecular analysis of simian varicella virus DNA. Virology, 1992, 190, 597-605.	2.4	36
121	Expression of a functional foreign gene in adult mammalian brain following in Vivo transfer via a herpes simplex virus type 1 defective viral vector. Molecular and Cellular Neurosciences, 1991, 2, 320-330.	2.2	105
122	Nucleoprotein complex formed between herpes simplex virus UL9 protein and the origin of DNA replication: inter- and intramolecular interactions Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10946-10950.	7.1	25
123	In vivo analysis of the initiation of bacteriophage T7 dna replication. Virology, 1990, 174, 585-592.	2.4	10
124	Initiation of DNA replication at cloned origins of bacteriophage T7. Journal of Molecular Biology, 1988, 204, 903-916.	4.2	23
125	A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. Journal of Molecular Biology, 1984, 178, 569-594.	4.2	65
126	In vitro bypass of UV-induced lesions by Escherichia coli DNA polymerase I: specificity of nucleotide incorporation Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 1541-1545.	7.1	61

#	Article	IF	CITATIONS
127	Effect of acetylated and deacetylated 2-aminofluorene adducts on in vitro DNA synthesis Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7166-7170.	7.1	74
128	Interactions between DNA polymerase and aminofluorene adducts that affect the recognition and possibly the mutagenicity of the lesions. Biochimie, 1982, 64, 757-762.	2.6	8
129	The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. Biochimie, 1982, 64, 829-838.	2.6	187
130	In Vitro Replication of Mutagen-Damaged DNA: Sites of Termination. , 1982, 20, 179-197.		2
131	Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 110-114.	7.1	192
132	Biosynthesis of defective HSV DNA. , 1981, , 185-195.		2
133	Electron microscopy of branched HSV DNA molecules: Possible recombination intermediates. , 1981, , 85-93.		0
134	Replication of HSV-1 DNA: Isolation of a subnuclear DNA synthesizing fraction. , 1981, , 95-106.		0
135	Termination of in vitro DNA synthesis at AAF adducts in the DNA. Nucleic Acids Research, 1980, 8, 4473-4484.	14.5	49
136	Herpes simplex virus DNA polymerase, thymidine kinase and deoxyribonuclease activities in cells infected with wild type, ultraviolet-irradiated and defective virus. Archives of Virology, 1979, 62, 163-174.	2.1	6
137	Defective Herpes Simplex Virus DNA: Circular and Circular-linear Molecules Resembling Rolling Circles. Journal of General Virology, 1978, 40, 319-335.	2.9	41