
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303318/publications.pdf Version: 2024-02-01

MIRKO VÃOLKERS

#	Article	IF	CITATIONS
1	Editorial: Metabolic Regulation of Cardiac and Vascular Cell Function: Physiological and Pathophysiological Implications. Frontiers in Physiology, 2022, 13, 849869.	2.8	0
2	Analysis of myocardial cellular gene expression during pressure overload reveals matrix based functional intercellular communication. IScience, 2022, 25, 103965.	4.1	8
3	Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFβ signalling. Cardiovascular Research, 2021, 117, 201-211.	3.8	13
4	N6-Methyladenosine in the Heart. RNA Technologies, 2021, , 309-323.	0.3	0
5	Comparative Transcriptomics of Immune Checkpoint Inhibitor Myocarditis Identifies Guanylate Binding Protein 5 and 6 Dysregulation. Cancers, 2021, 13, 2498.	3.7	23
6	Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Reports, 2021, 35, 109100.	6.4	19
7	Muscleâ€specific Cand2 is translationally upregulated by mTORC1 and promotes adverse cardiac remodeling. EMBO Reports, 2021, 22, e52170.	4.5	13
8	Saraf-dependent activation of mTORC1 regulates cardiac growth. Journal of Molecular and Cellular Cardiology, 2020, 141, 30-42.	1.9	11
9	A Multi-Network Comparative Analysis of Transcriptome and Translatome Identifies Novel Hub Genes in Cardiac Remodeling. Frontiers in Genetics, 2020, 11, 583124.	2.3	4
10	Targeting coagulation in heart failure with preserved ejection fraction and cardiac fibrosis. European Heart Journal, 2019, 40, 3333-3335.	2.2	3
11	Monitoring Cell-Type–Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress. Circulation Research, 2019, 125, 431-448.	4.5	56
12	<scp>TIP</scp> 30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Molecular Medicine, 2019, 11, e10018.	6.9	17
13	PRAS40 suppresses atherogenesis through inhibition of mTORC1-dependent pro-inflammatory signaling in endothelial cells. Scientific Reports, 2019, 9, 16787.	3.3	11
14	ADP-dependent glucokinase regulates energy metabolism via ER-localized glucose sensing. Scientific Reports, 2019, 9, 14248.	3.3	15
15	Crosstalk Between the Endoplasmic Reticulum and mTOR Signaling. Circulation Research, 2019, 124, 9-11.	4.5	3
16	m ⁶ A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Science Alliance, 2019, 2, e201800233.	2.8	109
17	A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nature Medicine, 2018, 24, 62-72.	30.7	88
18	Genomic structural variations lead to dysregulation of important coding and non oding RNA species in dilated cardiomyopathy. EMBO Molecular Medicine, 2018, 10, 107-120.	6.9	43

#	Article	IF	CITATIONS
19	Inhibition of Cardiac Kir Current (IK1) by Protein Kinase C Critically Depends on PKCβ and Kir2.2. PLoS ONE, 2016, 11, e0156181.	2.5	9
20	Myoscape controls cardiac calcium cycling and contractility via regulation of L-type calcium channel surface expression. Nature Communications, 2016, 7, 11317.	12.8	20
21	S100A4 protects the myocardium against ischemic stress. Journal of Molecular and Cellular Cardiology, 2016, 100, 54-63.	1.9	38
22	Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. Journal of Biological Chemistry, 2015, 290, 13935-13947.	3.4	26
23	S100A1 DNA-based Inotropic Therapy Protects Against Proarrhythmogenic Ryanodine Receptor 2 Dysfunction. Molecular Therapy, 2015, 23, 1320-1330.	8.2	14
24	Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circulation Research, 2015, 117, 536-546.	4.5	89
25	PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Molecular Medicine, 2014, 6, 57-65.	6.9	68
26	S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Tollâ€like receptor 4. EMBO Molecular Medicine, 2014, 6, 778-794.	6.9	66
27	Metabolic Dysfunction Consistent With Premature Aging Results From Deletion of Pim Kinases. Circulation Research, 2014, 115, 376-387.	4.5	49
28	IL-1α Reversibly Inhibits Skeletal Muscle Ryanodine Receptor. A Novel Mechanism for Critical Illness Myopathy?. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1096-1106.	2.9	26
29	Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth. Basic Research in Cardiology, 2013, 108, 375.	5.9	50
30	Fibronectin Is Essential for Reparative Cardiac Progenitor Cell Response After Myocardial Infarction. Circulation Research, 2013, 113, 115-125.	4.5	105
31	Mechanistic Target of Rapamycin Complex 2 Protects the Heart From Ischemic Damage. Circulation, 2013, 128, 2132-2144.	1.6	97
32	High-sensitive Troponin T increase after exercise in patients with pulmonary arterial hypertension. BMC Pulmonary Medicine, 2013, 13, 28.	2.0	14
33	mTOR/PRAS40 interaction: Hypertrophy or proliferation. Cell Cycle, 2013, 12, 3579-3580.	2.6	16
34	Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5969-5974.	7.1	109
35	Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12661-12666.	7.1	100
36	Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1. Circulation Research, 2013, 112, 1244-1252.	4.5	46

#	Article	IF	CITATIONS
37	Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. Journal of Cell Science, 2012, 125, 287-294.	2.0	55
38	Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6145-6150.	7.1	62
39	Myocardial AKT: The Omnipresent Nexus. Physiological Reviews, 2011, 91, 1023-1070.	28.8	196
40	S100A1 Genetically Targeted Therapy Reverses Dysfunction of Human Failing Cardiomyocytes. Journal of the American College of Cardiology, 2011, 58, 966-973.	2.8	62
41	Pim-1 kinase inhibits pathological injury by promoting cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2011, 51, 554-558.	1.9	28
42	Central role of PKCα in isoenzyme-selective regulation of cardiac transient outward current Ito and Kv4.3 channels. Journal of Molecular and Cellular Cardiology, 2011, 51, 722-729.	1.9	14
43	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	2.2	79
44	The Inotropic Peptide βARKct Improves βAR Responsiveness in Normal and Failing Cardiomyocytes Through G _{βγ} -Mediated L-Type Calcium Current Disinhibition. Circulation Research, 2011, 108, 27-39.	4.5	47
45	S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease. Journal of Cardiovascular Translational Research, 2010, 3, 525-537.	2.4	56
46	Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes. Circulation Research, 2010, 106, 1265-1274.	4.5	100
47	S100A1: A Regulator of Striated Muscle Sarcoplasmic Reticulum Ca ²⁺ Handling, Sarcomeric, and Mitochondrial Function. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	51
48	Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2010, 48, 1329-1334.	1.9	140
49	Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. Journal of Molecular Medicine, 2009, 87, 411-422.	3.9	34
50	S100A1 in cardiovascular health and disease: Closing the gap between basic science and clinical therapy. Journal of Molecular and Cellular Cardiology, 2009, 47, 445-455.	1.9	73
51	Endothelial S100A1 Modulates Vascular Function via Nitric Oxide. Circulation Research, 2008, 102, 786-794.	4.5	38
52	Identification of Cardiac Troponin I Sequence Motifs Leading to Heart Failure by Induction of Myocardial Inflammation and Fibrosis. Circulation, 2008, 118, 2063-2072.	1.6	97
53	S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium, 2007, 41, 135-143.	2.4	59
54	Cardiac S100A1 Protein Levels Determine Contractile Performance and Propensity Toward Heart Failure After Myocardial Infarction. Circulation, 2006, 114, 1258-1268.	1.6	127

#	Article	IF	CITATIONS
55	Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes. Journal of Cell Science, 2005, 118, 421-431.	2.0	57
56	S100A1 Gene Therapy Preserves in Vivo Cardiac Function after Myocardial Infarction. Molecular Therapy, 2005, 12, 1120-1129.	8.2	80
57	Hope for a broken heart?. Trends in Biotechnology, 2004, 22, 487-489.	9.3	6
58	Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. Journal of Clinical Investigation, 2004, 114, 1550-1563.	8.2	179