Isidro HermosÃ-n-Gutiérrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302998/publications.pdf

Version: 2024-02-01

124 papers 5,984 citations

43 h-index 72 g-index

125 all docs

125 docs citations

125 times ranked

6194 citing authors

#	Article	IF	CITATIONS
1	Flavonol Profiles of Vitis vinifera Red Grapes and Their Single-Cultivar Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 992-1002.	5.2	342
2	Simultaneous HPLC Analysis of Biogenic Amines, Amino Acids, and Ammonium Ion as Aminoenone Derivatives in Wine and Beer Samples. Journal of Agricultural and Food Chemistry, 2007, 55, 608-613.	5.2	273
3	Free amino acid composition and botanical origin of honey. Food Chemistry, 2003, 83, 263-268.	8.2	255
4	HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 2007, 20, 618-626.	3.9	237
5	Flavonol 3- <i>O</i> -Glycosides Series of <i>Vitis vinifera</i> Cv. Petit Verdot Red Wine Grapes. Journal of Agricultural and Food Chemistry, 2009, 57, 209-219.	5.2	178
6	Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chemistry, 2005, 92, 269-283.	8.2	164
7	Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. Journal of Agricultural and Food Chemistry, 2010, 58, 6081-6089.	5.2	160
8	Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 2010, 660, 177-182.	5.4	140
9	Red-Color Related Phenolic Composition of Garnacha Tintorera (<i>Vitis vinifera</i> L.) Grapes and Red Wines. Journal of Agricultural and Food Chemistry, 2009, 57, 7883-7891.	5.2	138
10	Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 2017, 214, 308-318.	8.2	124
11	Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International, 2014, 55, 397-403.	6.2	113
12	Effect of Copigments and Grape Cultivar on the Color of Red Wines Fermented after the Addition of Copigments. Journal of Agricultural and Food Chemistry, 2005, 53, 8372-8381.	5.2	112
13	Phenolic Composition of the Edible Parts (Flesh and Skin) of BordôGrape (<i>Vitis labrusca</i>) Using HPLC–DAD–ESI-MS/MS. Journal of Agricultural and Food Chemistry, 2011, 59, 13136-13146.	5 . 2	112
14	Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Analytica Chimica Acta, 2010, 659, 208-215.	5.4	106
15	Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Research International, 2013, 51, 706-713.	6.2	98
16	Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chemistry, 2009, 113, 377-385.	8.2	92
17	Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea×IAC 1398-21) using HPLC–DAD–ESI-MS/MS. Food Research International, 2013, 54, 354-366.	6.2	91
18	Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 2010, 23, 699-705.	3.9	90

#	Article	IF	Citations
19	HPLC–DAD–ESI-MS/MS Characterization of Pyranoanthocyanins Pigments Formed in Model Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 9523-9531.	5 . 2	87
20	Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium) Tj ETQq0 0	0 rgBT/Ove	erlock 10 Tf 50
21	Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (<i>Citrus paradisi</i> Hacf.). Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	70
22	Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chemistry, 2018, 252, 61-71.	8.2	69
23	Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena. Food Chemistry, 2014, 159, 95-105.	8.2	67
24	Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Research International, 2014, 65, 282-290.	6.2	66
25	Formation of Hydroxyphenyl-pyranoanthocyanins in Grenache Wines:  Precursor Levels and Evolution during Aging. Journal of Agricultural and Food Chemistry, 2007, 55, 4883-4888.	5.2	65
26	Effect of Two Different Treatments for Reducing Grape Yield in Vitis vinifera cv Syrah on Wine Composition and Quality: Berry Thinning versus Cluster Thinning. Journal of Agricultural and Food Chemistry, 2013, 61, 4968-4978.	5.2	65
27	Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chemistry, 2014, 164, 81-88.	8.2	63
28	Application of abscisic acid (S-ABA) to cv. Isabel grapes (Vitis vinifera×Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Research International, 2015, 77, 572-583.	6.2	63
29	Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chemistry, 2017, 237, 1073-1082.	8.2	63
30	Antioxidant capacity and phenolic composition of different woods used in cooperage. Food Chemistry, 2011, 129, 1584-1590.	8.2	62
31	Influence of Ethanol Content on the Extent of Copigmentation in a Cencibel Young Red Wine. Journal of Agricultural and Food Chemistry, 2003, 51, 4079-4083.	5 . 2	61
32	Aging of red wines made from hybrid grape cv. BRS Violeta: Effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Research International, 2014, 56, 182-189.	6.2	58
33	Phenolic compounds and antioxidant activity of Macedonian red wines. Journal of Food Composition and Analysis, 2015, 41, 1-14.	3.9	58
34	Phenolic Composition of the Brazilian Seedless Table Grape Varieties BRS Clara and BRS Morena. Journal of Agricultural and Food Chemistry, 2011, 59, 8314-8323.	5.2	56
35	Oxygen consumption rates by different oenological tannins in a model wine solution. Food Chemistry, 2017, 234, 26-32.	8.2	53
36	Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. Journal of Chromatography A, 2013, 1281, 38-45.	3.7	51

#	Article	IF	CITATIONS
37	Antimicrobial activity and differentiation of anthocyanin profiles of rabbiteye and highbush blueberries using HPLC–DAD–ESI-MS n and multivariate analysis. Journal of Functional Foods, 2016, 26, 506-516.	3.4	51
38	Micro-oxygenation and oak chip treatments of red wines: Effects on colour-related phenolics, volatile composition and sensory characteristics. Part II: Merlot wines. Food Chemistry, 2011, 124, 738-748.	8.2	50
39	Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chemistry, 2019, 295, 350-360.	8.2	50
40	Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Food Chemistry, 2014, 158, 449-458.	8.2	48
41	Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Research International, 2017, 102, 32-42.	6.2	48
42	Effect of wine micro-oxygenation treatment and storage period on colour-related phenolics, volatile composition and sensory characteristics. LWT - Food Science and Technology, 2011, 44, 866-874.	5.2	47
43	Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chemistry, 2018, 265, 101-110.	8.2	47
44	Combined Effects of Prefermentative Skin Maceration and Oxygen Addition of Must on Color-Related Phenolics, Volatile Composition, and Sensory Characteristics of Airén White Wine. Journal of Agricultural and Food Chemistry, 2011, 59, 12171-12182.	5.2	45
45	Cleavage and Oligomerization of Malondialdehyde. Tetrahedron, 1993, 49, 1237-1250.	1.9	43
46	Antiproliferative activity and new argininyl bufadienolide esters from the "cururú―toad Rhinella (Bufo) schneideri. Journal of Ethnopharmacology, 2014, 155, 1076-1085.	4.1	42
47	Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content. Food Chemistry, 2016, 199, 822-827.	8.2	40
48	Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry, 2016, 64, 6555-6566.	5.2	40
49	Bog bilberry phenolics, antioxidant capacity and nutrient profile. Food Chemistry, 2016, 201, 339-349.	8.2	40
50	Micro-oxygenation and oak chip treatments of red wines: Effects on colour-related phenolics, volatile composition and sensory characteristics. Part I: Petit Verdot wines. Food Chemistry, 2011, 124, 727-737.	8.2	39
51	Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chemistry, 2015, 180, 55-63.	8.2	39
52	Hyperoxygenation and Bottle Storage of Chardonnay White Wines: Effects on Color-Related Phenolics, Volatile Composition, and Sensory Characteristics. Journal of Agricultural and Food Chemistry, 2011, 59, 4171-4182.	5.2	37
53	Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chemistry, 2015, 167, 84-90.	8.2	37
54	Survey on the content of vitisin A and hydroxyphenyl-pyranoanthocyanins in Tempranillo wines. Food Chemistry, 2010, 119, 1426-1434.	8.2	36

#	Article	IF	CITATIONS
55	Identification of New Derivatives of 2-S-Glutathionylcaftaric Acid in Aged White Wines by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry, 2010, 58, 11483-11492.	5. 2	35
56	Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta ("BRS Rúbeaâ€Ã—"IAC 1398-21â€). Food Research Internation 2013, 54, 33-43.	1al6.2	35
57	Occurrence of low molecular weight phenolics in Vitis vinifera red grape cultivars and their winemaking by-products from São Paulo (Brazil). Food Research International, 2014, 62, 500-513.	6.2	35
58	Color, Ellagitannins, Anthocyanins, and Antioxidant Activity of Andean Blackberry (Rubus glaucus) Tj ETQq0 0 0 r	gBT /Over 5.2	locൃഷ്ട് 10 Tf 50
59	Enological potential of chestnut wood for aging Tempranillo wines Part II: Phenolic compounds and chromatic characteristics. Food Research International, 2013, 51, 536-543.	6.2	33
60	Patagonian berries as native food and medicine. Journal of Ethnopharmacology, 2019, 241, 111979.	4.1	33
61	Accelerated Aging against Conventional Storage: Effects on the Volatile Composition of Chardonnay White Wines. Journal of Food Science, 2013, 78, C507-13.	3.1	31
62	Evolution of the phenolic content, chromatic characteristics and sensory properties during bottle storage of red single-cultivar wines from Castilla La Mancha region. Food Research International, 2013, 51, 554-563.	6.2	31
63	The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells. Food Chemistry, 2016, 194, 908-919.	8.2	31
64	Isolation and Structural Elucidation of Anthocyanidin 3,7- \hat{l}^2 - <i>O</i> Diglucosides and Caffeoyl-glucaric Acids from Calafate Berries. Journal of Agricultural and Food Chemistry, 2014, 62, 6918-6925.	5.2	30
65	Phenolics from the Patagonian currants Ribes spp.: Isolation, characterization and cytoprotective effect in human AGS cells. Journal of Functional Foods, 2016, 26, 11-26.	3.4	30
66	Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column. Journal of Chromatography A, 2010, 1217, 5710-5717.	3.7	29
67	Antiproliferative and cytotoxic effects of grape pomace and grape seed extracts on colorectal cancer cell lines. Food Science and Nutrition, 2019, 7, 2948-2957.	3.4	29
68	Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia. Molecules, 2019, 24, 3331.	3.8	29
69	Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify Rabbiteye and Highbush blueberries. Food Chemistry, 2021, 340, 127958.	8.2	28
70	Effect of the pre-treatment and the drying process on the phenolic composition of raisins produced with a seedless Brazilian grape cultivar. Food Research International, 2019, 116, 190-199.	6.2	26
71	Antioxidant activity and the isolation of polyphenols and new iridoids from Chilean Gaultheria phillyreifolia and G. poeppigii berries. Food Chemistry, 2019, 291, 167-179.	8.2	25
72	Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Research International, 2020, 128, 108750.	6.2	25

#	Article	IF	CITATIONS
73	Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis vinifera Cultivars Albillo Dorado and Montonera del Casar: A Comparative Study with Airén. Foods, 2020, 9, 1282.	4.3	24
74	Cleavage and oligomerization of malondialdehyde under physiological conditions. Tetrahedron Letters, 1990, 31, 4077-4080.	1.4	23
75	New acylated flavonols identified in Vitis vinifera grapes and wines. Food Research International, 2018, 112, 98-107.	6.2	23
76	First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLCâ€DADâ€ESIâ€MS/MS, GCâ€MS, and Napping® techniques: comparison with Tempranillo. Journal of the Science of Food and Agriculture, 2019, 99, 2108-2123.	3 . 5	23
77	Flavonol Profiles for Grape and Wine Authentication. ACS Symposium Series, 2011, , 113-129.	0.5	22
78	Influence of berry size on red wine colour and composition. Australian Journal of Grape and Wine Research, 2015, 21, 200-212.	2.1	22
79	BRS Violeta (BRS Rúbea × IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chemistry, 2019, 298, 124971.	8.2	22
80	Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Food Chemistry, 2019, 277, 391-397.	8.2	22
81	Synthesis, Isolation, Structure Elucidation, and Color Properties of 10-Acetyl-pyranoanthocyanins. Journal of Agricultural and Food Chemistry, 2012, 60, 12210-12223.	5.2	21
82	Antioxidant activity and phenolic profiles of the wild currant <i>Ribes magellanicum</i> from Chilean and Argentinean Patagonia. Food Science and Nutrition, 2016, 4, 595-610.	3.4	21
83	Characteristic Phenolic Composition of Single-Cultivar Red Wines of the Canary Islands (Spain). Journal of Agricultural and Food Chemistry, 2011, 59, 6150-6164.	5. 2	20
84	Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Research International, 2016, 87, 197-203.	6.2	20
85	Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia) Tj ETQq $1\ 1\ 0$	0.784314 t 8.2	rgBT Over <mark>lo</mark>
86	Study of phenolic composition and sensory properties of red grape varieties in danger of extinction from the Spanish region of Castilla-La Mancha. European Food Research and Technology, 2012, 234, 295-303.	3.3	19
87	Changes in the content of anthocyanins, flavonols, and antioxidant activity in <i>Fragaria ananassa</i> var. Camarosa fruits under traditional and organic fertilization. Journal of the Science of Food and Agriculture, 2019, 99, 2404-2410.	3.5	19
88	Structure Elucidation of Peonidin 3,7- <i>O</i> -β-Diglucoside Isolated from Garnacha Tintorera (Vitis) Tj ETQq0 0 C) ggBT /Ov	erlock 10 Tf
89	Oenological potential, phenolic composition, chromatic characteristics and antioxidant activity of red single-cultivar wines from Castilla-La Mancha. Food Research International, 2012, 48, 7-15.	6.2	18
90	Sensory descriptive and comprehensive GC–MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta. Food Chemistry, 2019, 272, 462-470.	8.2	18

#	Article	IF	Citations
91	Sensory acceptance drivers of pre-fermentation dehydration and submerged cap red wines produced from Vitis labrusca hybrid grapes. LWT - Food Science and Technology, 2016, 69, 82-90.	5.2	16
92	Analysis of the phenolic composition and yield of â€~BRS Vitoria' seedless table grape under different bunch densities using HPLC–DAD–ESI-MS/MS. Food Research International, 2020, 130, 108955.	6.2	15
93	Phenolic composition of peels from different Jaboticaba species determined by HPLC-DAD-ESI/MSn and antiproliferative activity in tumor cell lines. Current Plant Biology, 2022, 29, 100233.	4.7	15
94	Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. European Food Research and Technology, 2015, 240, 595-607.	3.3	14
95	Pre-drying and submerged cap winemaking: Effects on polyphenolic compounds and sensory descriptors. Part II: BRS Carmem and BordA´ (Vitis labrusca L.). Food Research International, 2015, 76, 697-708.	6.2	14
96	Influence of malondialdehyde on the Maillard degradation of Amadori compounds. Carbohydrate Research, 1992, 229, 307-322.	2.3	13
97	FLAVONOL PROFILES FOR VARIETAL DIFFERENTIATION BETWEEN CARMÉNÃ^RE AND MERLOT WINES PRODUCED IN CHILE: HPLC AND CHEMOMETRIC ANALYSIS. Journal of the Chilean Chemical Society, 2011, 56, 827-832.	1.2	13
98	Polyphenolic composition of Spanish red wines made from Spanish Vitis vinifera L. red grape varieties in danger of extinction. European Food Research and Technology, 2013, 236, 647-658.	3.3	13
99	Vine-Shoot Tannins: Effect of Post-pruning Storage and Toasting Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 5556-5562.	5.2	13
100	Sensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part II: BRS Rúbea and BRS Cora. Food Chemistry, 2020, 311, 126025.	8.2	13
101	Effect of co-winemaking in phenolic composition, color and antioxidant capacity of young red wines from La Mancha region. European Food Research and Technology, 2012, 235, 155-167.	3.3	12
102	Influence of grape seeds on wine composition and astringency of Tempranillo, Garnacha, Merlot and Cabernet Sauvignon wines. Food Science and Nutrition, 2020, 8, 3442-3455.	3.4	12
103	Reaction of amino sugars with malondialdehyde. Carbohydrate Research, 1990, 200, 167-180.	2.3	11
104	Improvement of Cencibel Red Wines by Oxygen Addition after Malolactic Fermentation: Study on Color-Related Phenolics, Volatile Composition, and Sensory Characteristics. Journal of Agricultural and Food Chemistry, 2012, 60, 5962-5973.	5.2	11
105	Effect of drying methods on the phenolic content and antioxidant capacity of Brazilian winemaking byproducts and their stability over storage. International Journal of Food Sciences and Nutrition, 2015, 66, 895-903.	2.8	11
106	Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food Chemistry, 2017, 226, 23-31.	8.2	11
107	Characterization of the phenolic ripening development of †BRS Vitoria†Meedless table grapes using HPLC†DAD†ESI-MS/MS. Journal of Food Composition and Analysis, 2021, 95, 103693.	3.9	10
108	Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile. Molecules, 2021, 26, 314.	3.8	10

#	Article	IF	CITATIONS
109	Effects of hyper-oxygenation and storage of Macabeo and Airén white wines on their phenolic and volatile composition. European Food Research and Technology, 2012, 234, 87-99.	3.3	8
110	Genotypic variation in phenolic composition of novel white grape genotypes (Vitis vinifera L.). Journal of Food Composition and Analysis, 2021, 102, 103987.	3.9	8
111	Isabel red wines produced from grape pre-drying and submerged cap winemaking: A phenolic and sensory approach. LWT - Food Science and Technology, 2017, 81, 58-66.	5.2	7
112	Systematic study of hydroxyl radical production in white wines as a function of chemical composition. Food Chemistry, 2019, 288, 377-385.	8.2	7
113	<i>Vitis vinifera</i> Turkish grape cultivar Karaerik. Part I: anthocyanin composition, and identification of a newly found anthocyanin ^{â€} . Journal of the Science of Food and Agriculture, 2020, 100, 1301-1310.	3.5	7
114	Application of a Novel Small-Scale Sample Cleanup Procedure Prior to MALDI-TOF-MS for Rapid Pigment Fingerprinting of Red Wines. Food Analytical Methods, 2014, 7, 820-827.	2.6	6
115	By-products of pyro-bituminous shale as amendments in Brazilian vineyards: Influence on polyphenolic composition of Cabernet Sauvignon wines. Food Research International, 2016, 81, 122-132.	6.2	5
116	Isolation and characterization of secondary metabolites from <i>Gaultheria tenuifolia</i> berries. Journal of Food Science, 2020, 85, 2792-2802.	3.1	5
117	Monitoring of chemical parameters of oxygen-treated musts during alcoholic fermentation and subsequent bottle storage of the resulting wines. European Food Research and Technology, 2013, 236, 77-88.	3.3	4
118	Pre-drying and submerged cap winemaking: Effects on polyphenolic compounds and sensory descriptors. Part I: BRS Rúbea and BRS Cora. Food Research International, 2015, 75, 374-384.	6.2	4
119	Phenolic composition of BRS Violeta red wines produced from alternative winemaking techniques: relationship with antioxidant capacity and sensory descriptors. European Food Research and Technology, 2016, 242, 1913-1923.	3.3	4
120	<scp><i>Vitis vinifera</i> Turkish</scp> novel table grape â€~ <scp>Karaerik</scp> '. Part <scp>II</scp> : Nonâ€anthocyanin phenolic composition and antioxidant capacity. Journal of the Science of Food and Agriculture, 2022, 102, 813-822.	3.5	3
121	Influence of oxidized lipids on the non-enzymic browning reaction: interaction between linolenic acid and an Amadori compound. Chemistry and Physics of Lipids, 1992, 63, 265-270.	3.2	2
122	Comparison between the contribution of ellagitannins of new oak barrels and one-year-used barrels. BIO Web of Conferences, 2016, 7, 02016.	0.2	2
123	Phenolic compounds in juice of "lsabel―grape treated with abscisic acid for color improvement. BIO Web of Conferences, 2015, 5, 01014.	0.2	1
124	Anthocyanin Composition of Melinis minutiflora Cultivated in Brazil. Revista Brasileira De Farmacognosia, 2021, 31, 112-115.	1.4	1