Raed Abu-Reziq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302748/publications.pdf Version: 2024-02-01

RAED ARIL-REZIO

#	Article	IF	CITATIONS
1	Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 2018, 1, 689-695.	34.4	494
2	Metal Supported on Dendronized Magnetic Nanoparticles:Â Highly Selective Hydroformylation Catalysts. Journal of the American Chemical Society, 2006, 128, 5279-5282.	13.7	464
3	Mimicking Horseradish Peroxidase and NADH Peroxidase by Heterogeneous Cu ²⁺ -Modified Graphene Oxide Nanoparticles. Nano Letters, 2017, 17, 2043-2048.	9.1	190
4	Platinum Nanoparticles Supported on Ionic Liquidâ€Modified Magnetic Nanoparticles: Selective Hydrogenation Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2145-2150.	4.3	148
5	Separable Catalysts in One-Pot Syntheses for Greener Chemistry. Chemistry of Materials, 2008, 20, 2544-2550.	6.7	91
6	A Three-Phase Emulsion/Solid-Heterogenization Method for Transport and Catalysis. Angewandte Chemie - International Edition, 2002, 41, 4132-4134.	13.8	74
7	Heck Vinylation of Aryl Iodides by a Silica Solâ^'Gel Entrapped Pd(II) Catalyst and Its Combination with a Photocyclization Process. Organic Letters, 2004, 6, 925-927.	4.6	52
8	Entrapment of metallic palladium and a rhodium(I) complex in a silica sol–gel matrix. Journal of Molecular Catalysis A, 2002, 185, 179-185.	4.8	48
9	Entrapment of an Organometallic Complex within a Metal: A Concept for Heterogeneous Catalysis. Journal of the American Chemical Society, 2008, 130, 11880-11882.	13.7	47
10	BMIm-PF ₆ @SiO ₂ Microcapsules: Particulated Ionic Liquid as A New Material for the Heterogenization of Catalysts. Chemistry of Materials, 2014, 26, 4781-4787.	6.7	41
11	Catalytic hydrogenolysis of aromatic ketones by a sol–gel entrapped combined Pd-[Rh(cod)Cl]2 catalyst. Journal of Molecular Catalysis A, 2002, 187, 277-281.	4.8	38
12	Exhaustive hydrodechlorination of chlorinated aromatic environmental pollutants to alicyclic compounds. Green Chemistry, 2003, 5, 40-43.	9.0	38
13	Palladium Nanoparticles Supported on Magnetic Organic-Silica Hybrid Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 30045-30056.	3.1	36
14	Three-Phase Microemulsion/Sol–Gel System for Aqueous Catalysis with Hydrophobic Chemicals. Chemistry - A European Journal, 2004, 10, 958-962.	3.3	35
15	Functionalized Magnetic Mesoporous Silica Nanoparticleâ€&upported Palladium Catalysts for Carbonylative Sonogashira Coupling Reactions of Aryl Iodides. ChemCatChem, 2015, 7, 2230-2240.	3.7	34
16	Sol–gel entrapped heteronuclear transition metal catalysts. Polyhedron, 2000, 19, 509-512.	2.2	23
17	Three-Phase Microemulsion/Sol-Gel System for Aqueous Catalytic Hydroformylation of Hydrophobic Alkenes. European Journal of Organic Chemistry, 2005, 2005, 3640-3642.	2.4	23
18	Encapsulation of ionic liquid BMIm[PF6] within polyurea microspheres. Reactive and Functional Polymers, 2015, 96, 32-38.	4.1	21

RAED ABU-REZIQ

#	Article	IF	CITATIONS
19	Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis. Applied Sciences (Switzerland), 2012, 2, 260-276.	2.5	19
20	Palladium nanoparticles encapsulated in magnetically separable polymeric nanoreactors. Journal of Materials Chemistry A, 2014, 2, 3971-3977.	10.3	18
21	Sol-Gel Entrapped Pyridinium Hydrobromide Perbromide as a Recyclable Bromination Agent: Its Application to a One-Pot Bromination and Dehydrobromination Process. European Journal of Organic Chemistry, 2006, 2006, 1396-1399.	2.4	17
22	Palladium nanoparticles immobilized on magnetic nanoparticles: An efficient semi-heterogeneous catalyst for carbonylation of aryl bromides. Catalysis Communications, 2015, 61, 31-36.	3.3	17
23	Dynamic Spin-Controlled Enantioselective Catalytic Chiral Reactions. Journal of Physical Chemistry Letters, 2021, 12, 5469-5472.	4.6	17
24	High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts, 2020, 10, 840.	3.5	16
25	Ionic liquid-based polymeric microreactors and their applicability. Journal of Materials Science, 2017, 52, 10637-10647.	3.7	14
26	Preparation of catalytic deep eutectic solvent-based silica microreactors using a non-aqueous sol–gel route. Journal of Materials Chemistry A, 2019, 7, 2242-2252.	10.3	14
27	Immobilization of palladium catalyst on magnetically separable polyurea nanosupport. RSC Advances, 2014, 4, 48299-48309.	3.6	13
28	Homogeneous and Semiâ€Heterogeneous Magnetically Retrievable Bisâ€Nâ€Heterocyclic Carbene Rhodium(I) Based Catalysts for Selective Hydroaminomethylation Reactions. European Journal of Organic Chemistry, 2015, 2015, 1961-1969.	2.4	13
29	Magnetic Polyurea Nano-Capsules Synthesized via Interfacial Polymerization in Inverse Nano-Emulsion. Molecules, 2019, 24, 2663.	3.8	13
30	Chiral Ruthenium Catalyst Immobilized within Magnetically Retrievable Mesoporous Silica Microcapsules for Aqueous Asymmetric Transfer Hydrogenations. European Journal of Inorganic Chemistry, 2015, 2015, 2101-2109.	2.0	12
31	Visible-light-driven Cr(<scp>vi</scp>) reduction by ferrocene-integrated conjugated porous polymers <i>via</i> dual catalytic routes. Chemical Communications, 2021, 57, 4886-4889.	4.1	11
32	Hydrogenation of arenes, alkenes and alkynes catalyzed by a sol–gel entrapped mixture of [Rh(cod)Cl]2 and Na[HRu3(CO)11]. Journal of Molecular Catalysis A, 2008, 290, 30-34.	4.8	9
33	Preparation of Poly(ethylene glycol)@Polyurea Microcapsules Using Oil/Oil Emulsions and Their Application as Microreactors. Polymers, 2021, 13, 2566.	4.5	9
34	Rhodium-complexed hyperbranched poly(ethyleneimine) and polyamidoamine and their non-covalent immobilization on magnetic nanoparticles. Journal of Organometallic Chemistry, 2016, 818, 48-57.	1.8	6
35	Enantioselective Separation of Racemic Tryptophan with Sonochemically Prepared Egg Albumin Microspheres. ChemistrySelect, 2018, 3, 4004-4008.	1.5	6
36	Poly(ethylene glycol)@Silica hybrid microparticles prepared via a non-aqueous sol-gel process: A method for merging both classes of hybrid materials. Materialia, 2020, 9, 100526.	2.7	6

RAED ABU-REZIQ

#	Article	IF	CITATIONS
37	Chiral enantiopure organosilane precursors for the synthesis of periodic mesoporous organosilicas. Tetrahedron: Asymmetry, 2017, 28, 1675-1685.	1.8	5
38	Magnetically Separable Chiral Periodic Mesoporous Organosilica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5960.	2.5	4
39	Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5769.	2.5	4
40	Sulfonium cations as versatile strongly ï€-acidic ligands. Chemical Science, 2022, 13, 4770-4778.	7.4	4
41	Catalysis with solid lipid particles. Journal of Materials Science, 2015, 50, 2747-2758.	3.7	3
42	Chiral Polymeric Nanocapsules and Their Use for Conformational Deracemization of Liquid Crystals. Journal of Physical Chemistry C, 2018, 122, 17936-17941.	3.1	3
43	One-pot construction of nitrogen-rich polymeric ionic porous networks for effective CO ₂ capture and fixation. Polymer Chemistry, 2021, 13, 121-129.	3.9	3
44	Optical rotation kinetics study of the polycondensation of chiral sol-gel precursors. Journal of Sol-Gel Science and Technology, 2019, 90, 149-154.	2.4	1
45	Heck Vinylation of Aryl Iodides by a Silica Sol—Gel Entrapped Pd(II) Catalyst and Its Combination with a Photocyclization Process ChemInform, 2004, 35, no.	0.0	0
46	Functional Particulated Ionic Liquid-Based Silica Microcapsules. , 2017, , 29-38.		0