

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hazards of Propylene Oxide Aerosols in the Secondary Explosion. Combustion Science and Technology, 2023, 195, 153-168.	2.3	4
2	Explosion Hazard of AP/HTPB in Fire Condition. Combustion Science and Technology, 2023, 195, 1169-1183.	2.3	3
3	Experimental study on explosion parameters of ethanol aerosol under high-temperature source ignition. Fuel, 2022, 311, 122610.	6.4	5
4	Critical Condition of Reinforced Concrete Roof Slab Failure Under Blast and its Blast Resistance Design Method. Journal of Failure Analysis and Prevention, 2022, 22, 829-840.	0.9	1
5	Anti-explosion Design Method for Aluminum Alloy Doors in Ordinary Buildings. Journal of Failure Analysis and Prevention, 2021, 21, 268-279.	0.9	6
6	Experimental study of the explosion characteristics of isopropyl nitrate aerosol under high-temperature ignition source. Journal of Hazardous Materials, 2021, 415, 125634.	12.4	13
7	Experimental study on the vapor-liquid two-phase explosion of n-heptane under high-temperature source ignition. Combustion and Flame, 2021, 234, 111633.	5.2	11
8	Methods for estimating fragment hazard in gas explosion. Journal of Hazardous Materials, 2020, 381, 120989.	12.4	9
9	Criterion and propagation process of spark-induced dust layer explosion. Fuel, 2020, 267, 117205.	6.4	9
10	Comparison of detonation characteristics for typical binary blended fuel. Fuel, 2020, 268, 117351.	6.4	24
11	Multiple explosions induced by the deposited dust layer in enclosed pipeline. Journal of Hazardous Materials, 2019, 371, 423-432.	12.4	38
12	Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone. Energy, 2019, 171, 666-677.	8.8	18
13	Experimental study on explosion process of flour deposits/air mixture in horizontal pipelines. Powder Technology, 2019, 346, 273-282.	4.2	12
14	Theoretical and numerical study on ignition behaviour of coal dust layers on a hot surface with corrected kinetic parameters. Journal of Hazardous Materials, 2019, 368, 156-162.	12.4	27
15	Quantitative research on gas explosion inhibition by water mist. Journal of Hazardous Materials, 2019, 363, 16-25.	12.4	79
16	Flame propagation behaviors and temperature characteristics in polyethylene dust explosions. Powder Technology, 2018, 328, 345-357.	4.2	29
17	Explosion energy of methane/deposited coal dust and inert effects of rock dust. Fuel, 2018, 228, 112-122.	6.4	66
18	The quantitative studies on gas explosion suppression by an inert rock dust deposit. Journal of Hazardous Materials, 2018, 353, 62-69.	12.4	49

QI ZHANG

#	Article	IF	CITATIONS
19	Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions. Journal of Hazardous Materials, 2018, 344, 902-912.	12.4	108
20	Effect of turbulence on explosion of aluminum dust at various concentrations in air. Powder Technology, 2018, 325, 467-475.	4.2	40
21	Effect of vent size on vented hydrogen-air explosion. International Journal of Hydrogen Energy, 2018, 43, 17788-17799.	7.1	41
22	Comparison of detonation characteristics in energy output of gaseous JP-10 and propylene oxide in air. Fuel, 2018, 232, 154-164.	6.4	21
23	Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations. International Journal of Hydrogen Energy, 2017, 42, 14794-14808.	7.1	37
24	Explosion hazards of LPG-air mixtures in vented enclosure with obstacles. Journal of Hazardous Materials, 2017, 334, 59-67.	12.4	62
25	Effect of Ignition Location and Vent on Hazards of Indoor Liquefied Petroleum Gas Explosion. Combustion Science and Technology, 2017, 189, 698-716.	2.3	21
26	Interaction between gas explosion flame and deposited dust. Chemical Engineering Research and Design, 2017, 111, 775-784.	5.6	37
27	Influence of built-in obstacles on unconfined vapor cloud explosion. Journal of Loss Prevention in the Process Industries, 2016, 43, 449-456.	3.3	11
28	Numerical study of influence of initial pressures and temperatures on the lower flammability limits of oxygenated fuels in air. Journal of Loss Prevention in the Process Industries, 2016, 41, 40-47.	3.3	10
29	A methodology to predict shock overpressure decay in a tunnel produced by a premixed methane/air explosion. Journal of Loss Prevention in the Process Industries, 2016, 44, 275-281.	3.3	9
30	Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations. Fuel, 2016, 169, 41-49.	6.4	43
31	A study of the explosion parameters of vapor–liquid two-phase JP-10/air mixtures. Fuel, 2016, 165, 279-288.	6.4	43
32	Influence of concentration distribution of hydrogen in air on measured flammability limits. Journal of Loss Prevention in the Process Industries, 2015, 34, 82-91.	3.3	4
33	Effects of premixed methane concentration on distribution of flame region and hazard effects in a tunnel gas explosion. Journal of Loss Prevention in the Process Industries, 2015, 34, 30-38.	3.3	51
34	Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations. International Journal of Hydrogen Energy, 2015, 40, 8761-8768.	7.1	60
35	Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder–air mixtures. Journal of Hazardous Materials, 2015, 299, 603-617.	12.4	37
36	Effect of ignition delay on explosion parameters of corn dust/air inÂconfined chamber. Journal of Loss Prevention in the Process Industries, 2015, 33, 23-28.	3.3	24

QI ZHANG

#	Article	IF	CITATIONS
37	Limiting explosible concentration of hydrogen–oxygen–helium mixtures related to the practical operational case. Journal of Loss Prevention in the Process Industries, 2014, 29, 240-244.	3.3	14
38	Prediction of the explosion effect of aluminized explosives. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1004-1009.	5.1	6
39	Effect of aluminum dust on flammability of gaseous epoxypropane in air. Fuel, 2013, 109, 647-652.	6.4	18
40	Estimation of pressure distribution for shock wave through the junction of branch gallery. Safety Science, 2013, 57, 214-222.	4.9	7
41	Combustion parameters of gaseous epoxypropane/air in a confined vessel. Fuel, 2013, 105, 512-517.	6.4	25
42	lgnition Characteristics for Methaneâ€Air Mixtures atVarious Initial Temperatures. Process Safety Progress, 2013, 32, 37-41.	1.0	25
43	Analysis of the temperature distribution in the explosion of a methane/air mixture in a tunnel. Journal of Engineering Physics and Thermophysics, 2012, 85, 1413-1418.	0.6	1
44	Effects of humidity on minimum ignition energy of gaseous epoxypropane/air mixtures. Journal of Loss Prevention in the Process Industries, 2012, 25, 982-988.	3.3	11
45	Influence of spark duration on deflagration characteristics of methaneâ€air mixtures. Process Safety Progress, 2012, 31, 148-151.	1.0	9
46	Failure Analysis of Physical Explosion due to Gas Jetting from High-Pressure Pipeline. Journal of Failure Analysis and Prevention, 2012, 12, 181-189.	0.9	3
47	Coupling Relation Between Air Shockwave and High-Temperature Flow from Explosion of Methane in Air. Flow, Turbulence and Combustion, 2012, 89, 1-12.	2.6	10
48	Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures. Journal of Hazardous Materials, 2011, 185, 756-762.	12.4	51
49	Effects of spark duration on minimum ignition energy for methane/air mixture. Process Safety Progress, 2011, 30, 154-156.	1.0	24
50	Experimental study of gas deflagration temperature distribution and its measurement. Experimental Thermal and Fluid Science, 2011, 35, 503-508.	2.7	16
51	Relation of fragment with air shock wave intensity for explosion in a shell. International Journal of Impact Engineering, 2003, 28, 1129-1141.	5.0	23
52	Numerical investigation of F2 and H2 explosion process under flow conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-16.	2.3	0