Lukas Zeininger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8301058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO ₂ Nanoparticles. Chemistry - A European Journal, 2016, 22, 13506-13512.	3.3	63
2	Rapid Detection of <i>Salmonella enterica</i> via Directional Emission from Carbohydrate-Functionalized Dynamic Double Emulsions. ACS Central Science, 2019, 5, 789-795.	11.3	48
3	Janus Graphene: Scalable Selfâ€Assembly and Solutionâ€Phase Orthogonal Functionalization. Advanced Materials, 2019, 31, e1900438.	21.0	42
4	Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. Journal of Colloid and Interface Science, 2020, 575, 88-95.	9.4	41
5	Emulsion Agglutination Assay for the Detection of Protein–Protein Interactions: An Optical Sensor for Zika Virus. ACS Sensors, 2019, 4, 180-184.	7.8	36
6	Waveguide-based chemo- and biosensors: complex emulsions for the detection of caffeine and proteins. Lab on A Chip, 2019, 19, 1327-1331.	6.0	34
7	Temperature sensitive water-in-water emulsions. Chemical Communications, 2020, 56, 6814-6817.	4.1	26
8	Morphology-Dependent Luminescence in Complex Liquid Colloids. Journal of the American Chemical Society, 2019, 141, 3802-3806.	13.7	24
9	Cascade Kinetics in an Enzyme-Loaded Aqueous Two-Phase System. Langmuir, 2020, 36, 1401-1408.	3.5	24
10	Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. ACS Applied Materials & Interfaces, 2021, 13, 32510-32519.	8.0	24
11	Hydrogen bonding mediated orthogonal and reversible self-assembly of porphyrin sensitizers onto TiO ₂ nanoparticles. Chemical Communications, 2016, 52, 8842-8845.	4.1	21
12	Very Facile Polarity Umpolung and Noncovalent Functionalization of Inorganic Nanoparticles: A Tool Kit for Supramolecular Materials Chemistry. Chemistry - A European Journal, 2015, 21, 14030-14035.	3.3	19
13	Manufacturing Nanoparticles with Orthogonally Adjustable Dispersibility in Hydrocarbons, Fluorocarbons, and Water. ChemistryOpen, 2018, 7, 282-287.	1.9	18
14	Resistive and Capacitive Î ³ -Ray Dosimeters Based On Triggered Depolymerization in Carbon Nanotube Composites. ACS Sensors, 2018, 3, 976-983.	7.8	17
15	Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces. Physical Review Letters, 2021, 127, 144503.	7.8	17
16	A Supramolecular Approach for the Facile Solubilization and Separation of Covalently Functionalized Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2014, 20, 2537-2541.	3.3	16
17	Janus Emulsion Solar Concentrators as Photocatalytic Droplet Microreactors. Advanced Optical Materials, 2021, 9, 2101139.	7.3	16
18	Structurally Anisotropic Janus Particles with Tunable Amphiphilicity via Polymerization of Dynamic Complex Emulsions. Macromolecules, 2021, 54, 981-987.	4.8	14

Lukas Zeininger

#	Article	lF	CITATIONS
19	Responsive drop method: quantitative <i>in situ</i> determination of surfactant effectiveness using reconfigurable Janus emulsions. Soft Matter, 2020, 16, 10419-10424.	2.7	14
20	Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nature Communications, 2022, 13, 2562.	12.8	14
21	Facile Monitoring of Water Hardness Levels Using Responsive Complex Emulsions. Analytical Chemistry, 2021, 93, 9390-9396.	6.5	13
22	Highly Efficient Encapsulation and Phase Separation of Apolar Molecules by Magnetic Shellâ€byâ€Shellâ€Coated Nanocarriers in Water. Chemistry - A European Journal, 2018, 24, 13589-13595.	3.3	11
23	Crown Etherâ€Functionalized Complex Emulsions as an Artificial Adaptive Material Platform. Advanced Functional Materials, 2022, 32, 2107688.	14.9	11
24	Grafting Perylenes to ZnO Nanoparticles. Chemistry - A European Journal, 2014, 20, 2529-2536.	3.3	10
25	Surface Modification of ZnO Nanorods with Hamilton Receptors. International Journal of Molecular Sciences, 2015, 16, 8186-8200.	4.1	7
26	HamiltonReceptorâ€Mediated Selfâ€Assembly of Orthogonally Functionalized Au and TiO2Nanoparticles. Helvetica Chimica Acta, 2019, 102, e1900015.	1.6	5
27	Cascade communication in disordered networks of enzyme-loaded microdroplets. Chemical Communications, 2021, 57, 1631-1634.	4.1	5
28	Immobilization of Goldâ€onâ€Carbon Catalysts Onto Perfluorocarbon Emulsion Droplets to Promote Oxygen Delivery in Aqueous Phase D â€Glucose Oxidation. ChemCatChem, 2021, 13, 196-201.	3.7	3
29	Manufacturing Nanoparticles with Orthogonally Adjustable Dispersibility in Hydrocarbons, Fluorocarbons, and Water, ChemistryOpen, 2018, 7, 277-277	1.9	0