Ylenia Chiari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300719/publications.pdf

Version: 2024-02-01

361413 206112 2,680 52 20 48 h-index citations g-index papers 59 59 59 4518 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A rare case of caudal bifurcation in a miniaturized gecko from Puerto Rico. Anatomical Record, 2023, 306, 688-691.	1.4	0
2	Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	15
3	A new lineage of Galapagos giant tortoises identified from museum samples. Heredity, 2022, 128, 261-270.	2.6	3
4	Does colour impact responses to images in geckos?. Journal of Zoology, 2022, 317, 138-146.	1.7	5
5	Hybridization and low genetic diversity in the endangered Alabama redâ€bellied turtle (<i>Pseudemys) Tj ETQq1 1</i>	1 9.784314	4 ₄ gBT /Over
6	Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience, 2021, 43, 1975-1993.	4.6	6
7	Genetic diversity of immature Kemp's ridley (<scp><i>Lepidochelys kempii</i></scp>) sea turtles from the northern Gulf of Mexico. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 3003-3010.	2.0	3
8	Capturing and analyzing pattern diversity: an example using the melanistic spotted patterns of leopard geckos. PeerJ, 2021, 9, e11829.	2.0	8
9	Concurrent Evolution of Antiaging Gene Duplications and Cellular Phenotypes in Long-Lived Turtles. Genome Biology and Evolution, 2021, 13, .	2.5	6
10	Ecological, behavioral, and phylogenetic influences on the evolution of dorsal color pattern in geckos*. Evolution; International Journal of Organic Evolution, 2020, 74, 1033-1047.	2.3	21
11	Isolating and quantifying the role of developmental noise in generating phenotypic variation. PLoS Computational Biology, 2019, 15, e1006943.	3.2	16
12	Giant tortoise genomes provide insights into longevity and age-related disease. Nature Ecology and Evolution, 2019, 3, 87-95.	7.8	79
13	Application of the CometChip platform to assess DNA damage in fieldâ€collected blood samples from turtles. Environmental and Molecular Mutagenesis, 2018, 59, 322-333.	2.2	8
14	Mixed phylogenetic signal in fish toxicity data across chemical classes. Ecological Applications, 2018, 28, 605-611.	3.8	19
15	Insights on cancer resistance in vertebrates: reptiles as a parallel system to mammals. Nature Reviews Cancer, 2018, 18, 525-525.	28.4	5
16	Self-righting potential and the evolution of shell shape in GalÃ; pagos tortoises. Scientific Reports, 2017, 7, 15828.	3.3	27
17	Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus). Oecologia, 2016, 181, 885-894.	2.0	9
18	Functional, Phylogenetic and Host-Geographic Signatures of Labyrinthula spp. Provide for Putative Species Delimitation and a Global-Scale View of Seagrass Wasting Disease. Estuaries and Coasts, 2016, 39, 1403-1421.	2.2	39

#	Article	IF	CITATIONS
19	Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evolutionary Biology, 2015, 15, 47.	3.2	15
20	Phylogenetic signal in amphibian sensitivity to copper sulfate relative to experimental temperature. Ecological Applications, 2015, 25, 596-602.	3.8	22
21	Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS ONE, 2015, 10, e0138779.	2.5	54
22	Molecular Evolution and Functional Divergence of the Metallothionein Gene Family in Vertebrates. Journal of Molecular Evolution, 2014, 78, 217-233.	1.8	17
23	Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 2014, 515, 261-263.	27.8	493
24	Population genomics of the endangered giant $Gal\tilde{A}_i$ pagos tortoise. Genome Biology, 2013, 14, R136.	9.6	32
25	The determinants of the molecular substitution process in turtles. Journal of Evolutionary Biology, 2013, 26, 38-50.	1.7	53
26	No detection of the pathogen Batrachochytrium dendrobatidis in Sardinian cave salamanders, genus Hydromantes. Amphibia - Reptilia, 2013, 34, 136-141.	0.5	2
27	Isolation and characterization of six polymorphic microsatellite loci for the Malagasy spider tortoise, Pyxis arachnoides and cross-amplification in Pyxis planicauda. Amphibia - Reptilia, 2013, 34, 125-128.	0.5	4
28	Dating cryptodiran nodes: Origin and diversification of the turtle superfamily Testudinoidea. Molecular Phylogenetics and Evolution, 2012, 62, 496-507.	2.7	63
29	Morphometric identification of individuals when there are more shape variables than reference specimens: A case study in Galápagos tortoises. Comptes Rendus - Biologies, 2012, 335, 62-68.	0.2	16
30	Phylogeography of Sardinian Cave Salamanders (Genus Hydromantes) Is Mainly Determined by Geomorphology. PLoS ONE, 2012, 7, e32332.	2.5	37
31	Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 2012, 10, 65.	3.8	296
32	Referenceâ€free transcriptome assembly in nonâ€model animals from nextâ€generation sequencing data. Molecular Ecology Resources, 2012, 12, 834-845.	4.8	142
33	Nextâ€generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Molecular Ecology Resources, 2011, 11, 650-661.	4.8	92
34	Study of the carapace shape and growth in two Galápagos tortoise lineages. Journal of Morphology, 2011, 272, 379-386.	1.2	18
35	RNA extraction from sauropsids blood: evaluation and improvement of methods. Amphibia - Reptilia, 2011, 32, 136-139.	0.5	24
36	On the Possible Role of tRNA Base Modifications in the Evolution of Codon Usage: Queuosine and Drosophila. Journal of Molecular Evolution, 2010, 70, 339-345.	1.8	9

#	Article	IF	Citations
37	High haplotype diversity in a microendemic Malagasy gecko species, Lygodactylus mirabilis (Pasteur,) Tj ETQq1 1	0.784314	l rgBT /Overl
38	Base composition, selection, and phylogenetic significance of indels in the recombination activating gene-1 in vertebrates. Frontiers in Zoology, 2009, 6, 32.	2.0	9
39	Phylogenetic relationships of Sardinian cave salamanders, genus Hydromantes, based on mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 2009, 51, 399-404.	2.7	18
40	Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise. PLoS ONE, 2009, 4, e6272.	2.5	34
41	Into the canyons: The phylogeography of the Malagasy frogs Mantella expectata and Scaphiophryne gottlebei in the arid Isalo Massif, and its significance for conservation (Amphibia: Mantellidae and) Tj ETQq1 1 0.7	78 43 614 rg	BT1/ © verlock
42	Low genetic variability in the endangered Colombian endemic freshwater turtle Podocnemis lewyana (Testudines, Podocnemididae). Contributions To Zoology, 2007, 76, 1-7.	0.5	20
43	Molecular systematics of Malagasy poison frogs in the Mantella betsileo and ÂM. laevigata species groups. Zootaxa, 2007, 1501, 31-44.	0.5	9
44	Evidence for recent gene flow between north-eastern and south-eastern Madagascan poison frogs from a phylogeography of the Mantella cowani group. Frontiers in Zoology, 2007, 4, 1.	2.0	112
45	ORIGINAL ARTICLE: Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. Journal of Biogeography, 2006, 34, 7-20.	3.0	137
46	Mitochondrial evidence for distinct phylogeographic units in the endangered Malagasy poison frog Mantella bernhardi. Molecular Ecology, 2006, 15, 1617-1625.	3.9	29
47	Genetic identification of units for conservation in tomato frogs, genus Dyscophus. Conservation Genetics, 2006, 7, 473-482.	1.5	10
48	Genetic variation of an endangered Malagasy frog, Mantella cowani, and its phylogeographic relationship to the widespread M. baroni. Conservation Genetics, 2006, 6, 1041-1047.	1.5	8
49	Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2005, 2, 5.	2.0	456
50	New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Molecular Ecology, 2004, 13, 3763-3774.	3.9	96
51	High mitochondrial diversity within and among populations of Malagasy poison frogs. Molecular Phylogenetics and Evolution, 2004, 30, 295-307.	2.7	26
52	Using digital images to reconstruct three-dimensional biological forms: a new tool for morphological studies. Biological Journal of the Linnean Society, 0, 95, 425-436.	1.6	32