Jae Bum Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300172/publications.pdf Version: 2024-02-01

INE RUM KIM

23

#	Article	IF	CITATIONS
1	Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metabolism, 2022, 34, 458-472.e6.	7.2	56
2	SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metabolism, 2022, 34, 702-718.e5.	7.2	29
3	Hepatic GSK3β-Dependent CRY1 Degradation Contributes to Diabetic Hyperglycemia. Diabetes, 2022, 71, 1373-1387.	0.3	10
4	Adipocyte HIF2Î \pm functions as a thermostat via PKA CÎ \pm regulation in beige adipocytes. Nature Communications, 2022, 13, .	5.8	13
5	Targeted erasure of DNA methylation by TET3 drives adipogenic reprogramming and differentiation. Nature Metabolism, 2022, 4, 918-931.	5.1	10
6	Depletion of Adipocyte <i>Becn1</i> Leads to Lipodystrophy and Metabolic Dysregulation. Diabetes, 2021, 70, 182-195.	0.3	11
7	Phenotypic Discovery of SB1501, an Antiâ€obesity Agent, through Modulating Mitochondrial Activity. ChemMedChem, 2021, 16, 1104-1115.	1.6	2
8	DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
9	Characterization of Adipose Stem Cells through Single Cell RNAâ€sequencing Analysis. FASEB Journal, 2021, 35, .	0.2	0
10	Dysregulation of CRY1 Promotes Hyperglycemia in Diabetic Mice. FASEB Journal, 2021, 35, .	0.2	0
11	TIM4+ adipose tissue-resident macrophages: new modulators of adiposity. Nature Reviews Endocrinology, 2021, 17, 645-646.	4.3	4
12	Spatial Regulation of Reactive Oxygen Species via G6PD in Brown Adipocytes Supports Thermogenic Function. Diabetes, 2021, 70, 2756-2770.	0.3	9
13	NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nature Immunology, 2021, 22, 193-204.	7.0	52
14	Emerging roles of epigenetic regulation in obesity and metabolic disease. Journal of Biological Chemistry, 2021, 297, 101296.	1.6	13
15	RNF20 Functions as a Transcriptional Coactivator for PPAR 3 by Promoting NCoR1 Degradation in Adipocytes. Diabetes, 2020, 69, 20-34.	0.3	22
16	Peroxisomal-PEX5 Controls Fasting-Induced Lipolysis. Contact (Thousand Oaks (Ventura County, Calif) Tj ETQq() 0 0 rgBT	Overlock 10
17	The adaptor protein APPL2 controls glucose-stimulated insulin secretion via F-actin remodeling in pancreatic β-cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28307-28315.	3.3	16

#	Article	IF	CITATIONS
19	Hypoxia-inducible factors: new strategies for treatment of obesity-induced metabolic diseases. Postgraduate Medical Journal, 2020, 96, 451-452.	0.9	3
20	Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Frontiers in Immunology, 2020, 11, 598566.	2.2	6
21	Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nature Communications, 2020, 11, 578.	5.8	66
22	TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging. Nature Communications, 2019, 10, 3536.	5.8	29
23	During Adipocyte Remodeling, Lipid Droplet Configurations Regulate Insulin Sensitivity through F-Actin and G-Actin Reorganization. Molecular and Cellular Biology, 2019, 39, .	1.1	34
24	Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes and Development, 2019, 33, 1657-1672.	2.7	25
25	GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11936-11945.	3.3	48
26	Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors. Diabetes and Metabolism Journal, 2019, 43, 752.	1.8	43
27	Hypoxia Restrains Lipid Utilization via Protein Kinase A and Adipose Triglyceride Lipase Downregulation through Hypoxia-Inducible Factor. Molecular and Cellular Biology, 2019, 39, .	1.1	29
28	SREBP1c-PAX4 Axis Mediates Pancreatic β-Cell Compensatory Responses Upon Metabolic Stress. Diabetes, 2019, 68, 81-94.	0.3	16
29	Adipocyte CD1d determines adipose inflammation and insulin resistance in obesity. Adipocyte, 2018, 7, 1-8.	1.3	19
30	<i>Perilipin 3</i> Deficiency Stimulates Thermogenic Beige Adipocytes Through <i>PPARα</i> Activation. Diabetes, 2018, 67, 791-804.	0.3	31
31	Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. Journal of Clinical Investigation, 2018, 128, 1010-1025.	3.9	133
32	Hypothalamic Macrophage Inducible Nitric Oxide Synthase Mediates Obesity-Associated Hypothalamic Inflammation. Cell Reports, 2018, 25, 934-946.e5.	2.9	62
33	Perilipin 1 (Plin1) deficiency promotes inflammatory responses in lean adipose tissue through lipid dysregulation. Journal of Biological Chemistry, 2018, 293, 13974-13988.	1.6	68
34	Regulatory Roles of Invariant Natural Killer T Cells in Adipose Tissue Inflammation: Defenders Against Obesity-Induced Metabolic Complications. Frontiers in Immunology, 2018, 9, 1311.	2.2	21
35	Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis. Molecules and Cells, 2018, 41, 900-908.	1.0	15
36	The activin- β A/BMP-2 chimera AB204 is a strong stimulator of adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1524-1531.	1.3	5

#	Article	IF	CITATIONS
37	Deletion of CD1d in Adipocytes Aggravates Adipose Tissue Inflammation and Insulin Resistance in Obesity. Diabetes, 2017, 66, 835-847.	0.3	60
38	The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity. Adipocyte, 2017, 6, 147-153.	1.3	26
39	Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nature Communications, 2017, 8, 1087.	5.8	58
40	RNF20 Suppresses Tumorigenesis by Inhibiting the SREBP1c-PTTG1 Axis in Kidney Cancer. Molecular and Cellular Biology, 2017, 37, .	1.1	40
41	Organ-specific alterations in circadian genes by vertical sleeve gastrectomy in an obese diabetic mouse model. Science Bulletin, 2017, 62, 467-469.	4.3	5
42	SREBP1c-CRY1 axis suppresses hepatic gluconeogenesis upon insulin. Cell Cycle, 2017, 16, 139-140.	1.3	1
43	Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Frontiers in Endocrinology, 2016, 7, 30.	1.5	792
44	Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes. Journal of Biological Chemistry, 2016, 291, 20315-20328.	1.6	18
45	SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nature Communications, 2016, 7, 12180.	5.8	67
46	Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity. Diabetes, 2016, 65, 2624-2638.	0.3	55
47	Dynamic cross talk between metabolic organs in obesity and metabolic diseases. Experimental and Molecular Medicine, 2016, 48, e214-e214.	3.2	27
48	Evaluation of the Synuclein-γ (SNCG) Gene as a PPARγ Target in Murine Adipocytes, Dorsal Root Ganglia Somatosensory Neurons, and Human Adipose Tissue. PLoS ONE, 2015, 10, e0115830.	1.1	8
49	Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nature Communications, 2015, 6, 5951.	5.8	74
50	Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance <i>via</i> glucagonâ€ike peptide 1 in dietâ€induced obesity. FASEB Journal, 2015, 29, 2397-2411.	0.2	177
51	Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance Independent of Inflammation. Molecular and Cellular Biology, 2015, 35, 1686-1699.	1.1	192
52	Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nature Communications, 2015, 6, 7585.	5.8	168
53	Ablation of Perilipin 1 Alters Whole Body Glucose Homeostasis. FASEB Journal, 2015, 29, 885.15.	0.2	0
54	Regulation of Adipocyte Differentiation via MicroRNAs. Endocrinology and Metabolism, 2014, 29, 122.	1.3	82

#	Article	IF	CITATIONS
55	Lipid Droplet Protein LID-1 Mediates ATGL-1-Dependent Lipolysis during Fasting in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2014, 34, 4165-4176.	1.1	82
56	Arp2/3 complex regulates adipogenesis by controlling cortical actin remodelling. Biochemical Journal, 2014, 464, 179-192.	1.7	22
57	Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity. Molecules and Cells, 2014, 37, 365-371.	1.0	303
58	Ring finger protein20 regulates hepatic lipid metabolism through protein kinase Aâ€dependent sterol regulatory element binding protein1c degradation. Hepatology, 2014, 60, 844-857.	3.6	45
59	PIASy-Mediated Sumoylation of SREBP1c Regulates Hepatic Lipid Metabolism upon Fasting Signaling. Molecular and Cellular Biology, 2014, 34, 926-938.	1.1	39
60	The adipokine Retnla modulates cholesterol homeostasis in hyperlipidemic mice. Nature Communications, 2014, 5, 4410.	5.8	38
61	Macrophage HIF-2α Ameliorates Adipose Tissue Inflammation and Insulin Resistance in Obesity. Diabetes, 2014, 63, 3359-3371.	0.3	89
62	Proteome Analysis of Mouse Adipose Tissue and Colon Tissue using a Novel Integrated Data Processing Pipeline. Mass Spectrometry Letters, 2014, 5, 16-23.	0.5	0
63	Macrophage Glucose-6-Phosphate Dehydrogenase Stimulates Proinflammatory Responses with Oxidative Stress. Molecular and Cellular Biology, 2013, 33, 2425-2435.	1.1	90
64	A Novel Function of Adipocytes in Lipid Antigen Presentation to iNKT Cells. Molecular and Cellular Biology, 2013, 33, 328-339.	1.1	108
65	Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very lowâ€density lipoprotein receptor. Hepatology, 2013, 57, 1366-1377.	3.6	155
66	AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. Journal of Lipid Research, 2012, 53, 1277-1286.	2.0	83
67	Feeding Period Restriction Alters the Expression of Peripheral Circadian Rhythm Genes without Changing Body Weight in Mice. PLoS ONE, 2012, 7, e49993.	1.1	26
68	SREBP1c is regulated by E3 ligase RNF20/BRE1A upon hormonal changes. FASEB Journal, 2012, 26, 732.2.	0.2	0
69	Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet–Induced Insulin Resistance. Diabetes, 2011, 60, 2474-2483.	0.3	452
70	Effect of nanogroove geometry on adipogenic differentiation. Nanotechnology, 2011, 22, 494017.	1.3	18
71	G6PD Up-Regulation Promotes Pancreatic Î ² -Cell Dysfunction. Endocrinology, 2011, 152, 793-803.	1.4	43
72	A Newly Identified CG301269 Improves Lipid and Glucose Metabolism Without Body Weight Gain Through Activation of Peroxisome Proliferator–Activated Receptor α and γ. Diabetes, 2011, 60, 496-506.	0.3	27

#	Article	IF	CITATIONS
73	Atypical antipsychotic drugs perturb AMPK-dependent regulation of hepatic lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E624-E632.	1.8	54
74	Anti-obesity effects of <i>Lysimachia foenum-graecum</i> characterized by decreased adipogenesis and regulated lipid metabolism. Experimental and Molecular Medicine, 2011, 43, 205.	3.2	47
75	Hypermethylation of Growth Arrest DNA-Damage-Inducible Gene 45 in Non-Small Cell Lung Cancer and Its Relationship with Clinicopathologic Features. Molecules and Cells, 2010, 30, 89-92.	1.0	38
76	Adipose tissue–specific dysregulation of angiotensinogen by oxidative stress in obesity. Metabolism: Clinical and Experimental, 2010, 59, 1241-1251.	1.5	30
77	Carbonyl reductase 1 protects pancreatic β-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity. Free Radical Biology and Medicine, 2010, 49, 1522-1533.	1.3	47
78	Prolactin regulatory element–binding protein involved in cAMPâ€mediated suppression of adiponectin gene. Journal of Cellular and Molecular Medicine, 2010, 14, 1294-1302.	1.6	3
79	Cell-penetration by Co(III)cyclen-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses. Bioorganic and Medicinal Chemistry, 2010, 18, 5248-5253.	1.4	9
80	Adipocytokine Orosomucoid Integrates Inflammatory and Metabolic Signals to Preserve Energy Homeostasis by Resolving Immoderate Inflammation. Journal of Biological Chemistry, 2010, 285, 22174-22185.	1.6	108
81	Adiponectin Represses Colon Cancer Cell Proliferation via AdipoR1- and -R2-Mediated AMPK Activation. Molecular Endocrinology, 2010, 24, 1441-1452.	3.7	201
82	A Nonthiazolidinedione Peroxisome Proliferator-Activated Receptor α/γ Dual Agonist CG301360 Alleviates Insulin Resistance and Lipid Dysregulation in <i>db/db</i> Mice. Molecular Pharmacology, 2010, 78, 877-885.	1.0	6
83	Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity. Journal of Lipid Research, 2010, 51, 3425-3433.	2.0	46
84	Hypothalamic Angptl4/Fiaf Is a Novel Regulator of Food Intake and Body Weight. Diabetes, 2010, 59, 2772-2780.	0.3	98
85	miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARÎ ³ expression. Biochemical and Biophysical Research Communications, 2010, 392, 323-328.	1.0	383
86	Molecular Characterization of the Tumor Suppressor Candidate 5 Gene: Regulation by PPARÎ ³ and Identification of TUSC5 Coding Variants in Lean and Obese Humans. PPAR Research, 2009, 2009, 1-13.	1.1	12
87	Liver X Receptor Ligands Suppress Ubiquitination and Degradation of LXRα by Displacing BARD1/BRCA1. Molecular Endocrinology, 2009, 23, 466-474.	3.7	27
88	Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E812-E819.	1.8	211
89	Adiponectin Stimulates Osteoblast Differentiation Through Induction of COX2 in Mesenchymal Progenitor Cells. Stem Cells, 2009, 27, 2254-2262.	1.4	113
90	Berberine suppresses proinflammatory responses through AMPK activation in macrophages. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E955-E964.	1.8	379

#	Article	IF	CITATIONS
91	IRE-1 and HSP-4 Contribute to Energy Homeostasis via Fasting-Induced Lipases in C. elegans. Cell Metabolism, 2009, 9, 440-448.	7.2	52
92	Glutathione Peroxidase 3 Mediates the Antioxidant Effect of Peroxisome Proliferator-Activated Receptor Î ³ in Human Skeletal Muscle Cells. Molecular and Cellular Biology, 2009, 29, 20-30.	1.1	152
93	Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology, 2008, 48, 1477-1486.	3.6	151
94	Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme. Bioorganic and Medicinal Chemistry, 2008, 16, 3580-3586.	1.4	50
95	Berberine Promotes Osteoblast Differentiation by Runx2 Activation With p38 MAPK. Journal of Bone and Mineral Research, 2008, 23, 1227-1237.	3.1	102
96	Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochemical and Biophysical Research Communications, 2008, 367, 97-102.	1.0	37
97	The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPARÎ ³ . Biochemical and Biophysical Research Communications, 2008, 370, 264-268.	1.0	14
98	The Helix–Loop–Helix Factors Id3 and E47 Are Novel Regulators of Adiponectin. Circulation Research, 2008, 103, 624-634.	2.0	60
99	Sterol Regulatory Element–Binding Protein-1c Represses the Transactivation of Androgen Receptor and Androgen-Dependent Growth of Prostatic Cells. Molecular Cancer Research, 2008, 6, 314-324.	1.5	8
100	Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Research, 2008, 36, 6372-6385.	6.5	53
101	Dysregulation of Adipose Glutathione Peroxidase 3 in Obesity Contributes to Local and Systemic Oxidative Stress. Molecular Endocrinology, 2008, 22, 2176-2189.	3.7	156
102	Chromatin Remodeling Complex Interacts with ADD1/SREBP1c To Mediate Insulin-Dependent Regulation of Gene Expression. Molecular and Cellular Biology, 2007, 27, 438-452.	1.1	35
103	Chronic Activation of Liver X Receptor Induces Â-Cell Apoptosis Through Hyperactivation of Lipogenesis: Liver X Receptor-Mediated Lipotoxicity in Pancreatic Â-Cells. Diabetes, 2007, 56, 1534-1543.	0.3	91
104	New evaluations of redox regulating system in adipose tissue of obesity. Diabetes Research and Clinical Practice, 2007, 77, S11-S16.	1.1	23
105	Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical and Biophysical Research Communications, 2006, 346, 739-745.	1.0	392
106	Selective LXRα inhibitory effects observed in plant extracts of MEH184 (Parthenocissua tricuspidata) and MEH185 (Euscaphis japonica). Biochemical and Biophysical Research Communications, 2006, 349, 513-518.	1.0	15
107	Crystal Structure of Visfatin/Pre-B Cell Colony-enhancing Factor 1/Nicotinamide Phosphoribosyltransferase, Free and in Complex with the Anti-cancer Agent FK-866. Journal of Molecular Biology, 2006, 362, 66-77.	2.0	107
108	Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. Diabetes, 2006, 55, 2256-2264.	0.3	932

#	Article	IF	CITATIONS
109	Down-regulation of Histone Deacetylases Stimulates Adipocyte Differentiation. Journal of Biological Chemistry, 2006, 281, 6608-6615.	1.6	160
110	Histone Deacetylase 1-Mediated Histone Modification Regulates Osteoblast Differentiation. Molecular Endocrinology, 2006, 20, 2432-2443.	3.7	193
111	Adiponectin Increases Fatty Acid Oxidation in Skeletal Muscle Cells by Sequential Activation of AMP-Activated Protein Kinase, p38 Mitogen-Activated Protein Kinase, and Peroxisome Proliferator–Activated Receptor α. Diabetes, 2006, 55, 2562-2570.	0.3	492
112	Increase in Glucose-6-Phosphate Dehydrogenase in Adipocytes Stimulates Oxidative Stress and Inflammatory Signals. Diabetes, 2006, 55, 2939-2949.	0.3	131
113	Overexpression of Glucose-6-Phosphate Dehydrogenase Is Associated with Lipid Dysregulation and Insulin Resistance in Obesity. Molecular and Cellular Biology, 2005, 25, 5146-5157.	1.1	194
114	HMG-CoA Reductase Inhibition Reduces Monocyte CC Chemokine Receptor 2 Expression and Monocyte Chemoattractant Protein-1–Mediated Monocyte Recruitment In Vivo. Circulation, 2005, 111, 1439-1447.	1.6	86
115	Transcriptional regulation of mouse 6-phosphogluconate dehydrogenase by ADD1/SREBP1c. Biochemical and Biophysical Research Communications, 2005, 332, 288-296.	1.0	22
116	Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochemical and Biophysical Research Communications, 2005, 333, 1178-1184.	1.0	80
117	Adipocyte Determination- and Differentiation-dependent Factor 1/Sterol Regulatory Element-binding Protein 1c Regulates Mouse Adiponectin Expression. Journal of Biological Chemistry, 2004, 279, 22108-22117.	1.6	125
118	Regulatory Role of Glycogen Synthase Kinase 3 for Transcriptional Activity of ADD1/SREBP1c. Journal of Biological Chemistry, 2004, 279, 51999-52006.	1.6	94
119	Activated Liver X Receptors Stimulate Adipocyte Differentiation through Induction of Peroxisome Proliferator-Activated Receptor Î ³ Expression. Molecular and Cellular Biology, 2004, 24, 3430-3444.	1.1	222
120	Overexpression of Uncoupling Protein 2 in THP1 Monocytes Inhibits β2Integrin-Mediated Firm Adhesion and Transendothelial Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 864-870.	1.1	67
121	Differential Regulation of Human and Mouse Orphan Nuclear Receptor Small Heterodimer Partner Promoter by Sterol Regulatory Element Binding Protein-1. Journal of Biological Chemistry, 2004, 279, 28122-28131.	1.6	32
122	Identification of Ku70/Ku80 as ADD1/SREBP1c interacting proteins. Korean Journal of Biological Sciences, 2004, 8, 49-55.	0.1	1
123	Regulation of adipocyte differentiation and insulin action with rapamycin. Biochemical and Biophysical Research Communications, 2004, 321, 942-948.	1.0	127
124	Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors. Biochemical and Biophysical Research Communications, 2004, 322, 614-622.	1.0	1
125	DHEA administration increases brown fat uncoupling protein 1 levels in obese OLETF rats. Biochemical and Biophysical Research Communications, 2003, 303, 726-731.	1.0	37
126	Trigger factor interacts with DnaA protein to stimulate its interaction with DnaA box. Korean Journal of Biological Sciences, 2003, 7, 81-87.	0.1	0

#	Article	IF	CITATIONS
127	Twist2, a novel ADD1/SREBP1c interacting protein, represses the transcriptional activity of ADD1/SREBP1c. Nucleic Acids Research, 2003, 31, 7165-7174.	6.5	54
128	Functional Characterization of the Human Resistin Promoter with Adipocyte Determination- and Differentiation-Dependent Factor 1/Sterol Regulatory Element Binding Protein 1c and CCAAT Enhancer Binding Protein-α. Molecular Endocrinology, 2003, 17, 1522-1533.	3.7	57
129	Hrp3, a chromodomain helicase/ATPase DNA binding protein, is required for heterochromatin silencing in fission yeast. Biochemical and Biophysical Research Communications, 2002, 295, 970-974.	1.0	20
130	Positive Transcription Elongation Factor b Phosphorylates hSPT5 and RNA Polymerase II Carboxyl-terminal Domain Independently of Cyclin-dependent Kinase-activating Kinase. Journal of Biological Chemistry, 2001, 276, 12317-12323.	1.6	158
131	Rad22 Protein, a Rad52 Homologue inSchizosaccharomyces pombe, Binds to DNA Double-strand Breaks. Journal of Biological Chemistry, 2000, 275, 35607-35611.	1.6	36
132	Identification of Conserved cis-Elements and Transcription Factors Required for Sterol-regulated Transcription of Stearoyl-CoA Desaturase 1 and 2. Journal of Biological Chemistry, 1999, 274, 20603-20610.	1.6	204
133	Regulation of Peroxisome Proliferator-Activated Receptor Î ³ Expression by Adipocyte Differentiation and Determination Factor 1/Sterol Regulatory Element Binding Protein 1: Implications for Adipocyte Differentiation and Metabolism. Molecular and Cellular Biology, 1999, 19, 5495-5503.	1.1	395
134	ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose. Molecular and Cellular Biology, 1999, 19, 3760-3768.	1.1	491
135	Transcriptional Activation of the Stearoyl-CoA Desaturase 2 Gene by Sterol Regulatory Element-binding Protein/Adipocyte Determination and Differentiation Factor 1. Journal of Biological Chemistry, 1998, 273, 22052-22058.	1.6	100
136	ADD1/SREBP1 activates PPARÂ through the production of endogenous ligand. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4333-4337.	3.3	599
137	Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1 Journal of Clinical Investigation, 1998, 101, 1-9.	3.9	637
138	Identification of Glycerol-3-phosphate Acyltransferase as an Adipocyte Determination and Differentiation Factor 1- and Sterol Regulatory Element-binding Protein-responsive Gene. Journal of Biological Chemistry, 1997, 272, 7298-7305.	1.6	224
139	Multiple Sequence Elements are Involved in the Transcriptional Regulation of the Human Squalene Synthase Gene. Journal of Biological Chemistry, 1997, 272, 10295-10302.	1.6	100
140	Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Current Opinion in Lipidology, 1997, 8, 212-218.	1.2	86
141	PPARÎ ³ and the control of adipogenesis. Biochimie, 1997, 79, 111-112.	1.3	122
142	ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism Genes and Development, 1996, 10, 1096-1107.	2.7	878
143	Adipocyte differentiation: a transcriptional regulatory cascade. Current Opinion in Cell Biology, 1996, 8, 826-832.	2.6	171
144	Inhibition of Adipogenesis Through MAP Kinase-Mediated Phosphorylation of PPARÂ. Science, 1996, 274, 2100-2103.	6.0	991

#	Article	IF	CITATIONS
145	Dual DNA Binding Specificity of ADD1/SREBP1 Controlled by a Single Amino Acid in the Basic Helix-Loop-Helix Domain. Molecular and Cellular Biology, 1995, 15, 2582-2588.	1.1	311
146	Expression of RAD4 Gene of Saccharomyces cerevisiae That Can Be Propagated in Escherichia coli without Inactivation. Biochemical and Biophysical Research Communications, 1993, 193, 191-197.	1.0	1
147	A gene inSchizosaccharomyces pombeanalogous to the RAD4 Gene ofSaccharomyces cerevisiae. FEMS Microbiology Letters, 1991, 77, 97-100.	0.7	4
148	A gene in Schizosaccharomyces pombe analogous to the RAD4 gene of Saccharomyces cerevisiae. FEMS Microbiology Letters, 1991, 61, 97-100.	0.7	2
149	CHARACTERIZATION OF RAD4 GENE REQUIRED FOR ULTRAVIOLET-INDUCED EXCISION REPAIR OF Saccharomyces cerevisiae PROPAGATED IN Escherichia coli WITHOUT INACTIVATION. Photochemistry and Photobiology, 1990, 52, 395-400.	1.3	4
150	Nucleotide sequence ofRAD4gene ofSaccharomyces cerevisiaethat can be propagated inEscherichia coliwithout inactivation. Nucleic Acids Research, 1990, 18, 7137-7137.	6.5	4