

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299574/publications.pdf Version: 2024-02-01

L v Tu

#	Article	IF	CITATIONS
1	Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. Cardiovascular Research, 2022, 118, 1805-1820.	1.8	26
2	Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension. Chest, 2022, 161, 219-231.	0.4	26
3	Therapeutic potential of melatonin and melatonergic drugs on K18â€ <i>hACE2</i> mice infected with SARS oVâ€2. Journal of Pineal Research, 2022, 72, e12772.	3.4	20
4	Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Research and Therapy, 2022, 24, 13.	1.6	6
5	Driving Role of Interleukinâ€2–Related Regulatory <scp>CD4</scp> + T Cell Deficiency in the Development of Lung Fibrosis and Vascular Remodeling in a Mouse Model of Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 1387-1398.	2.9	13
6	Plateletâ€Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. Journal of the American Heart Association, 2022, 11, e023021.	1.6	5
7	Additive protective effects of sacubitril/valsartan and bosentan on vascular remodelling in experimental pulmonary hypertension. Cardiovascular Research, 2021, 117, 1391-1401.	1.8	23
8	The Thousand Faces of Leptin in the Lung. Chest, 2021, 159, 239-248.	0.4	18
9	Altered TGFβ/SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells, 2021, 10, 84.	1.8	16
10	An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension. Nature Communications, 2021, 12, 1720.	5.8	30
11	Pulmonary hypertension associated with neurofibromatosis type 2. Pulmonary Circulation, 2021, 11, 1-4.	0.8	Ο
12	Serum and pulmonary uric acid in pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2000332.	3.1	28
13	Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension?. Metabolites, 2021, 11, 784.	1.3	2
14	Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovascular Research, 2020, 116, 686-697.	1.8	54
15	Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research, 2020, 116, 885-893.	1.8	70
16	Connexin-43 is a promising target for pulmonary hypertension due to hypoxaemic lung disease. European Respiratory Journal, 2020, 55, 1900169.	3.1	12
17	Purinergic Dysfunction in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2020, 9, e017404.	1.6	16
18	The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells, 2020, 9, 1422.	1.8	23

#	Article	IF	CITATIONS
19	Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?. European Respiratory Journal, 2020, 56, 2001634.	3.1	284
20	Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 766-782.	1.1	44
21	Lower Plasma Melatonin Levels Predict Worse Long-Term Survival in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2020, 9, 1248.	1.0	8
22	Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovascular Research, 2019, 115, 432-439.	1.8	38
23	Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. European Respiratory Journal, 2019, 54, 1802400.	3.1	25
24	Response by Guignabert et al to Letter Regarding Article, "Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension― Circulation Research, 2019, 124, e82-e83.	2.0	2
25	Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension. FASEB Journal, 2019, 33, 3670-3679.	0.2	22
26	Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circulation Research, 2019, 124, 846-855.	2.0	81
27	Design, Synthesis, and Biological Activity of New N-(Phenylmethyl)-benzoxazol-2-thiones as Macrophage Migration Inhibitory Factor (MIF) Antagonists: Efficacies in Experimental Pulmonary Hypertension. Journal of Medicinal Chemistry, 2018, 61, 2725-2736.	2.9	20
28	Dasatinib increases endothelial permeability leading to pleural effusion. European Respiratory Journal, 2018, 51, 1701096.	3.1	50
29	Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2018, 137, 910-924.	1.6	83
30	Macrophage Migration Inhibitory Factor (MIF) Inhibition in a Murine Model of Bleomycin-Induced Pulmonary Fibrosis. International Journal of Molecular Sciences, 2018, 19, 4105.	1.8	21
31	T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis. Arthritis Research and Therapy, 2018, 20, 197.	1.6	40
32	Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Frontiers in Physiology, 2018, 9, 555.	1.3	21
33	Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. Journal of Clinical Investigation, 2018, 128, 1956-1970.	3.9	125
34	Renal Denervation Reduces PulmonaryÂVascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension. JACC Basic To Translational Science, 2017, 2, 22-35.	1.9	31
35	Role of Stromelysin 2 (Matrix Metalloproteinase 10) as a Novel Mediator of Vascular Remodeling Underlying Pulmonary Hypertension Associated With Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 2209-2221.	2.9	17
36	Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Annals of the Rheumatic Diseases, 2017, 76, 1931-1940.	0.5	67

#	Article	IF	CITATIONS
37	A genome-wide association analysis identifies PDE1A DNAJC10 locus on chromosome 2 associated with idiopathic pulmonary arterial hypertension in a Japanese population. Oncotarget, 2017, 8, 74917-74926.	0.8	15
38	New targets for pulmonary arterial hypertension. Current Opinion in Pulmonary Medicine, 2017, 23, 377-385.	1.2	16
39	Dasatinib increases endothelial permeability leading to pleural effusion. , 2017, , .		ο
40	Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1410-1420.	2.5	77
41	Regulatory T Cell Dysfunction in Idiopathic, Heritable and Connective Tissue-Associated Pulmonary Arterial Hypertension. Chest, 2016, 149, 1482-1493.	0.4	63
42	Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3207-3218.	3.9	208
43	Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 342-355.	2.5	30
44	New Molecular Targets of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Chest, 2015, 147, 529-537.	0.4	140
45	Leptin signalling system as a target for pulmonary arterial hypertension therapy. European Respiratory Journal, 2015, 45, 1066-1080.	3.1	62
46	Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 983-997.	2.5	144
47	Increased Pericyte Coverage Mediated by Endothelial-Derived Fibroblast Growth Factor-2 and Interleukin-6 Is a Source of Smooth Muscle–Like Cells in Pulmonary Hypertension. Circulation, 2014, 129, 1586-1597.	1.6	178
48	Angiomatoid fibrous histiocytoma of the pulmonary artery: a multidisciplinary discussion. Histopathology, 2014, 65, 278-282.	1.6	12
49	N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 2014, 15, 65.	1.4	38
50	Immune Dysregulation and Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1332-1340.	1.6	141
51	Pathogenesis of pulmonary arterial hypertension: lessons from cancer. European Respiratory Review, 2013, 22, 543-551.	3.0	172
52	Emerging Molecular Targets for Anti-proliferative Strategies in Pulmonary Arterial Hypertension. Handbook of Experimental Pharmacology, 2013, 218, 409-436.	0.9	6
53	Emerging Molecular Targets for Anti-proliferative Strategies in Pulmonary Arterial Hypertension. Handbook of Experimental Pharmacology, 2013, , 409-436.	0.9	7
54	A Critical Role for p130 ^{Cas} in the Progression of Pulmonary Hypertension in Humans and Rodents. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 666-676.	2.5	85

#	Article	IF	CITATIONS
55	CD74-Dependent Interleukin-6 And Monocyte Chemoattractant Protein-1 Secretion By Pulmonary Endothelial Cells In Idiopathic Pulmonary Hypertension. , 2012, , .		3
56	Dysregulated Renin–Angiotensin–Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 780-789.	2.5	309
57	Autoimmunity And Pulmonary Arterial Hypertension: The Role Of Leptin. , 2012, , .		1
58	Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2012, 40, 895-904.	3.1	110
59	P130Cas-Dependent Reversal Of Pulmonary Arterial Muscularization By Imatinib, Gefitinib And Dovitinib. , 2012, , .		1
60	Right lung ischemia induces contralateral pulmonary vasculopathy in an animal model. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 967-973.	0.4	12
61	Autocrine Fibroblast Growth Factor-2 Signaling Contributes to Altered Endothelial Phenotype in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 311-322.	1.4	125
62	Pulmonary Hemodynamic Responses to Inhaled NO in Chronic Heart Failure Depend on <i>PDE5</i> G(â€1142)T Polymorphism. Pulmonary Circulation, 2011, 1, 377-382.	0.8	10
63	The Hyperproliferative, Apoptosis-Resistant Phenotype Of Pulmonary Microvascular Endothelial Cells In Idiopathic Pulmonary Arterial Hypertension Is Partially Mediated By Autocrine Production Of FGF-2. , 2010, , .		0
64	Dichloroacetate Treatment Partially Regresses Established Pulmonary Hypertension In Mice With SM22±-Targeted Over-expression Of The Serotonin Transporter. , 2010, , .		0
65	Consequences Of Alteration In TGF-ß/ALK1/endoglin Signaling In The Pathogenesis Of Human And Rodent Pulmonary Arterial Hypertension. , 2010, , .		0
66	Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22αâ€ŧargeted overexpression of the serotonin transporter. FASEB Journal, 2009, 23, 4135-4147.	0.2	80
67	Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. European Respiratory Journal, 2009, 34, 1100-1110.	3.1	68
68	Role for Interleukin-6 in COPD-Related Pulmonary Hypertension. Chest, 2009, 136, 678-687.	0.4	152
69	RhoA and Rho Kinase Activation in Human Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1151-1158.	2.5	165
70	Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respiratory Research, 2009, 10, 6.	1.4	247
71	Regression of flow-induced pulmonary arterial vasculopathy after flow correction in piglets. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1538-1546.	0.4	24
72	Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. Journal of Clinical Investigation, 2009, 119, 512-523.	3.9	177

#	Article	IF	CITATIONS
73	Role of Endothelium-derived CC Chemokine Ligand 2 in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1041-1047.	2.5	196
74	Transgenic Mice Overexpressing the 5-Hydroxytryptamine Transporter Gene in Smooth Muscle Develop Pulmonary Hypertension. Circulation Research, 2006, 98, 1323-1330.	2.0	170