Terry Engelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skempton's poroelastic relaxation: The mechanism that accounts for the distribution of pore pressure and exhumation-related fractures in black shale of the Appalachian Basin. AAPG Bulletin, 2021, 105, 669-694.	1.5	4
2	Influence of tectonic exhumation on porosity of Wufeng–Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China. AAPG Bulletin, 2020, 104, 939-959.	1.5	28
3	Gas well integrity and methane migration: evaluation of published evidence during shale-gas development in the USA. Hydrogeology Journal, 2020, 28, 1481-1502.	2.1	19
4	Complex rotation of maximum horizontal stress in the Wufeng-Longmaxi Shale on the eastern margin of the Sichuan Basin, China: Implications for predicting natural fractures. Marine and Petroleum Geology, 2019, 109, 519-529.	3.3	38
5	Stress memory extracted from shale in the vicinity of a fault zone: Implications for shale-gas retention. Marine and Petroleum Geology, 2019, 102, 340-349.	3.3	17
6	Analysis of a gas explosion in Dimock PA (USA) during fracking operations in the Marcellus gas shale. Chemical Engineering Research and Design, 2018, 117, 61-66.	5.6	21
7	Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12349-12358.	7.1	54
8	The correlation between low tectonic stress and the Appalachian Basin Quiet Zone. Tectonophysics, 2018, 745, 95-116.	2.2	9
9	Pancake joints in Utica gas shale: Mechanisms for lifting overburden during exhumation. Journal of Structural Geology, 2018, 117, 241-250.	2.3	6
10	Sonic properties as a signature of overpressure in the Marcellus gas shale of the Appalachian Basin. Geophysics, 2017, 82, D235-D249.	2.6	9
11	Further testing of the bedding-plane-slip model for hydraulic-fracture opening using moment-tensor inversions. Geophysics, 2016, 81, KS159-KS168.	2.6	37
12	A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. AAPG Bulletin, 2015, 99, 143-154.	1.5	57
13	Revisiting the Hubbert–Rubey pore pressure model for overthrust faulting: Inferences from bedding-parallelÂdetachment surfaces within Middle Devonian gas shale, the Appalachian Basin, USA. Journal of Structural Geology, 2014, 69, 519-537.	2.3	21
14	Use of S-wave attenuation from perforation shots to map the growth of the stimulated reservoir volume in the Marcellus gas shale. The Leading Edge, 2014, 33, 1090-1096.	0.7	15
15	The concept of joint saturation and its application. AAPG Bulletin, 2014, 98, 2347-2364.	1.5	19
16	Sequence stratigraphy and depositional environments of the Shamokin (Union Springs) Member, Marcellus Formation, and associated strata in the middle Appalachian Basin. AAPG Bulletin, 2014, 98, 483-513.	1.5	42
17	The fate of residual treatment water in gas shale. Journal of Unconventional Oil and Gas Resources, 2014, 7, 33-48.	3.5	167
18	Capillary tension and imbibition sequester frack fluid in Marcellus gas shale. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3625; author reply E3626.	7.1	84

#	Article	IF	CITATIONS
19	Should fracking stop?. Nature, 2011, 477, 271-275.	27.8	477
20	Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland basin evolution. AAPG Bulletin, 2011, 95, 61-103.	1.5	104
21	Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG Bulletin, 2009, 93, 857-889.	1.5	260
22	Jointing within the outer arc of a forebulge at the onset of the Alleghanian Orogeny. Journal of Structural Geology, 2007, 29, 774-786.	2.3	35
23	Early jointing in coal and black shale: Evidence for an Appalachian-wide stress field as a prelude to the Alleghanian orogeny. Geology, 2006, 34, 581.	4.4	47
24	Characterizing stress fields in the upper crust using joint orientation distributions. Journal of Structural Geology, 2005, 27, 1778-1787.	2.3	34
25	Mechanisms controlling rupture shape during subcritical growth of joints in layered rocks. Bulletin of the Geological Society of America, 2005, 117, 436.	3.3	77
26	An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex. AAPG Bulletin, 2005, 89, 1433-1449.	1.5	109
27	Preferential jointing of Upper Devonian black shale, Appalachian Plateau, USA: evidence supporting hydrocarbon generation as a joint-driving mechanism. Geological Society Special Publication, 2004, 231, 129-151.	1.3	26
28	The feedback between joint-zone development and downward erosion of regularly spaced canyons in the Navajo Sandstone, Zion National Park, Utah. Geological Society Special Publication, 2004, 231, 49-71.	1.3	5
29	The orientation distribution of single joint sets. Geological Society Special Publication, 2004, 231, 285-297.	1.3	2
30	Indentation pits: a product of incipient slip on joints with a mesotopography. Geological Society Special Publication, 2004, 231, 315-324.	1.3	2
31	Tectonic implications drawn from differences in the surface morphology on two joint sets in the Appalachian Valley and Ridge, Virginia. Geology, 2004, 32, 413.	4.4	24
32	The state of stress in the limb of the Split Mountain anticline, Utah: constraints placed by transected joints. Journal of Structural Geology, 2002, 24, 155-172.	2.3	46
33	Horizontal slip along Alleghanian joints of the Appalachian plateau: evidence showing that mild penetrative strain does little to change the pristine appearance of early joints. Tectonophysics, 2001, 336, 31-41.	2.2	16
34	Joint initiation in bedded clastic rocks. Journal of Structural Geology, 2001, 23, 203-221.	2.3	52
35	Joint development normal to regional compression during flexural-flow folding: the Lilstock buttress anticline, Somerset, England. Journal of Structural Geology, 2001, 23, 259-277.	2.3	95
36	Joint development during fluctuation of the regional stress field in southern Israel. Journal of Structural Geology, 2001, 23, 279-296.	2.3	54

#	Article	lF	CITATIONS
37	Faulted joints: kinematics, displacement–length scaling relations and criteria for their identification. Journal of Structural Geology, 2001, 23, 315-327.	2.3	72
38	Fringe cracks: Key structures for the interpretation of the progressive Alleghanian deformation of the Appalachian plateau. Bulletin of the Geological Society of America, 1999, 111, 219-239.	3.3	76
39	Joint interaction with embedded concretions: joint loading configurations inferred from propagation paths. Journal of Structural Geology, 1999, 21, 1637-1652.	2.3	30
40	Investigating the effect of mechanical discontinuities on joint spacing. Tectonophysics, 1998, 295, 245-257.	2.2	68
41	Fracture distribution in faulted basement blocks: Gulf of Suez, Egypt. Geological Society Special Publication, 1998, 127, 167-190.	1.3	21
42	Loading configurations and driving mechanisms for joints based on the Griffith energy-balance concept. Tectonophysics, 1996, 256, 253-277.	2.2	65
43	Concentrated slip zones with subsidiary shears: their development on three scales in the Cerro Brass fault zone, Appalachian valley and ridge. Journal of Structural Geology, 1995, 17, 519-532.	2.3	30
44	Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary conditions. Journal of Structural Geology, 1995, 17, 1303-1318.	2.3	83
45	Fracture toughness of ice and firn determined from the modified ring test. Journal of Glaciology, 1995, 41, 383-394.	2.2	36
46	Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. Geological Society Special Publication, 1995, 92, 215-233.	1.3	88
47	Finite-element analysis of the stress distribution around a pressurized crack in a layered elastic medium: implications for the spacing of fluid-driven joints in bedded sedimentary rock. Tectonophysics, 1995, 247, 49-64.	2.2	71
48	Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins. Geology, 1994, 22, 949.	4.4	182
49	Structural geology: Fundamentals and modern developments. Tectonophysics, 1994, 231, 347-349.	2.2	0
50	Heterogeneous hydrofracture development and accretionary fault dynamics: Comment and Reply. Geology, 1994, 22, 1052.	4.4	4
51	Curving cross joints and the lithospheric stress field in eastern North America. Geology, 1993, 21, 817.	4.4	52
52	Chapter 12 Fluid-driven Cyclic Propagation of a Joint in the Ithaca Siltstone, Appalachian Basin, New York. International Geophysics, 1992, 51, 297-323.	0.6	40
53	Veins in the Lockport dolostone: Evidence for an Acadian fluid circulation system. Geology, 1992, 20, 971.	4.4	13
54	Fractured rock. Journal of Structural Geology, 1992, 14, 380.	2.3	1

#	Article	IF	CITATIONS
55	A case for neotectonic joints along the Niagara Escarpment. Tectonics, 1991, 10, 631-641.	2.8	28
56	Geophysical log responses and their correlation with bedâ€ŧoâ€bed stress contrasts in Paleozoic rocks, Appalachian Plateau, New York. Journal of Geophysical Research, 1991, 96, 14509-14528.	3.3	80
57	Fluid evolution history of brittle-ductile shear zones on the hanging wall of Yellow Spring thrust, Valley and Ridge Province, Pennsylvania, U.S.A Tectonophysics, 1991, 198, 23-34.	2.2	16
58	Crack-propagation sequence and pore-fluid conditions during fault-bend folding in the Appalachian Valley and Ridge, central Pennsylvania. Bulletin of the Geological Society of America, 1990, 102, 116-128.	3.3	83
59	Neotectonic joints. Bulletin of the Geological Society of America, 1989, 101, 1197-1208.	3.3	111
60	Analysis of pinnate joints in the Mount Desert Island granite: Implications for postintrusion kinematics in the coastal volcanic belt, Maine. Geology, 1989, 17, 564.	4.4	45
61	Salt tectonics. Tectonophysics, 1989, 159, 161.	2.2	1
62	Appalachian Stress Study: 1. A detailed description of in situ stress variations in Devonian shales of the Appalachian Plateau. Journal of Geophysical Research, 1989, 94, 7129-7154.	3.3	101
63	Appalachian Stress Study: 2. Analysis of Devonian shale core: Some implications for the nature of contemporary stress variations and Alleghanian Deformation in Devonian rocks. Journal of Geophysical Research, 1989, 94, 7155-7170.	3.3	40
64	A comparison of the strain of crinoid columnals with that of their enclosing silty and shaly matrix on the Appalachian Plateau, New York. Journal of Structural Geology, 1989, 11, 975-993.	2.3	27
65	Characterization of Appalachian faults. Geology, 1988, 16, 178.	4.4	2
66	Correlation between abnormal pore pressure and tectonic jointing in the Devonian Catskill Delta. Geology, 1985, 13, 863.	4.4	53
67	Disjunctive cleavage formed at shallow depths in sedimentary rocks. Journal of Structural Geology, 1985, 7, 327-343.	2.3	140
68	Development of cleavage in limestones of a fold-thrust belt in eastern New York. Journal of Structural Geology, 1985, 7, 345-359.	2.3	142
69	Loading paths to joint propagation during a tectonic cycle: an example from the Appalachian Plateau, U.S.A Journal of Structural Geology, 1985, 7, 459-476.	2.3	219
70	The role of salt in fold-and-thrust belts. Tectonophysics, 1985, 119, 67-88.	2.2	531
71	Nearâ€surface in situ stress: 4. Residual stress in the Tully Limestone Appalachian Plateau, New York. Journal of Geophysical Research, 1984, 89, 9365-9370.	3.3	27
72	Surface morphology on cross-fold joints of the Appalachian Plateau, New york and Pennsylvania. Tectonophysics, 1984, 104, 299-313.	2.2	98

#	Article	IF	CITATIONS
73	Mesoscopic fault array of the northern Umbrian Apennine fold belt, Italy: Geometry of conjugate shear by pressure-solution slip. Bulletin of the Geological Society of America, 1982, 93, 1013.	3.3	64
74	Is there a genetic relationship between selected regional joints and contemporary stress within the lithosphere of North America?. Tectonics, 1982, 1, 161-177.	2.8	100
75	Reply to "Comment on â€~Is there a genetic relationship between selected regional joints and contemporary stress within the lithosphere of North America?'― Tectonics, 1982, 1, 465-470.	2.8	23
76	A natural example of the simultaneous operation of free-face dissolution and pressure solution. Geochimica Et Cosmochimica Acta, 1982, 46, 69-74.	3.9	63
77	General characteristics of strain relaxation: A note on sample preparation for largeâ€scale tests. Geophysical Research Letters, 1981, 8, 687-689.	4.0	1
78	Role of pressure solution and dissolution in geology. Geology, 1981, 9, 44.	4.4	17
79	The nature of deformation within the outer limits of the central appalachian foreland fold and thrust belt in New York state. Tectonophysics, 1979, 55, 289-310.	2.2	60
80	The relationship between pencil cleavage and lateral shortening within the Devonian section of the Appalachian Plateau, New York. Geology, 1979, 7, 460.	4.4	92
81	Aspects of asperity-surface interaction and surface damage of rocks during experimental frictional sliding. Pure and Applied Geophysics, 1978, 116, 705-716.	1.9	22
82	Classification of solution cleavage in pelagic limestones. Geology, 1978, 6, 263.	4.4	130
83	Fossil distortion and décollement tectonics of the Appalachian Plateau. Geology, 1977, 5, 457.	4.4	95
84	Deformation associated with the movement of the Muddy Mountain overthrust in the Buffington window, southeastern Nevada. Bulletin of the Geological Society of America, 1977, 88, 1667.	3.3	98
85	A mechanism for strain relaxation of barre granite: Opening of microfractures. Pure and Applied Geophysics, 1977, 115, 27-40.	1.9	26
86	The relationship betweenin situ strain relaxation and outcrop fractures in the Potsdam Sandstone, Alexandria Bay, New York. Pure and Applied Geophysics, 1977, 115, 41-55.	1.9	32
87	Formation of spaced cleavage and folds in brittle limestone by dissolution. Geology, 1976, 4, 698.	4.4	102