
Alex Andrianopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood, 2011, 117, e49-e56.	1.4	900
2	Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiology Reviews, 2015, 39, 797-811.	8.6	186
3	Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Molecular Microbiology, 1996, 19, 1255-1263.	2.5	172
4	Characterization of the <i>Aspergillus nidulans nmrA</i> Gene Involved in Nitrogen Metabolite Repression. Journal of Bacteriology, 1998, 180, 1973-1977.	2.2	143
5	Thermally Dimorphic Human Fungal Pathogens—Polyphyletic Pathogens with a Convergent Pathogenicity Trait. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019794.	6.2	103
6	Control of morphogenesis and actin localization by thePenicillium marneffei RAChomolog. Journal of Cell Science, 2003, 116, 1249-1260.	2.0	97
7	The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Molecular Microbiology, 2005, 55, 1487-1501.	2.5	96
8	An STE12 Homolog From the Asexual, Dimorphic Fungus Penicillium marneffei Complements the Defect in Sexual Development of an Aspergillus nidulans steA Mutant. Genetics, 2001, 157, 1003-1014.	2.9	94
9	Control of morphogenesis in the human fungal pathogen Penicillium marneffei. International Journal of Medical Microbiology, 2002, 292, 331-347.	3.6	93
10	The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Molecular Microbiology, 2002, 38, 1034-1047.	2.5	81
11	The CDC42 Homolog of the Dimorphic Fungus Penicillium marneffei Is Required for Correct Cell Polarization during Growth but Not Development. Journal of Bacteriology, 2001, 183, 3447-3457.	2.2	79
12	FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO Journal, 1998, 17, 2042-2054.	7.8	77
13	A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Molecular Microbiology, 2002, 44, 621-631.	2.5	60
14	TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Molecular Microbiology, 2003, 48, 85-94.	2.5	60
15	The twoâ€component histidine kinases DrkA and SlnA are required for <i>in vivo</i> growth in the human pathogen <i>Penicillium marneffei</i> . Molecular Microbiology, 2011, 82, 1164-1184.	2.5	60
16	Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathogens, 2018, 14, e1007063.	4.7	60
17	A global call for talaromycosis to be recognised as a neglected tropical disease. The Lancet Global Health, 2021, 9, e1618-e1622.	6.3	52
18	The G-Protein α-Subunit GasC Plays a Major Role in Germination in the Dimorphic Fungus <i>Penicillium marneffei</i> , Genetics, 2003, 164, 487-499.	2.9	51

#	Article	IF	CITATIONS
19	G-Protein Signaling Mediates Asexual Development at 25°C but Has No Effect on Yeast-Like Growth at 37°C in the Dimorphic Fungus Penicillium marneffei. Eukaryotic Cell, 2002, 1, 440-447.	3.4	47
20	A p21-Activated Kinase Is Required for Conidial Germination in Penicillium marneffei. PLoS Pathogens, 2007, 3, e162.	4.7	47
21	Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends in Microbiology, 2011, 19, 400-410.	7.7	47
22	Morphogenetic Circuitry Regulating Growth and Development in the Dimorphic Pathogen Penicillium marneffei. Eukaryotic Cell, 2013, 12, 154-160.	3.4	45
23	Clonality Despite Sex: The Evolution of Host-Associated Sexual Neighborhoods in the Pathogenic Fungus Penicillium marneffei. PLoS Pathogens, 2012, 8, e1002851.	4.7	44
24	Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei. PLoS Pathogens, 2015, 11, e1004790.	4.7	44
25	Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Molecular Microbiology, 2006, 62, 1725-1738.	2.5	43
26	<scp>K</scp> dm <scp>A</scp> , a histone <scp>H</scp> 3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in <scp><i>A</i></scp> <i>spergillus nidulans</i> . Molecular Microbiology, 2015, 96, 839-860.	2.5	43
27	Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genetics and Biology, 2012, 49, 772-778.	2.1	42
28	In Vivo Yeast Cell Morphogenesis Is Regulated by a p21-Activated Kinase in the Human Pathogen Penicillium marneffei. PLoS Pathogens, 2009, 5, e1000678.	4.7	35
29	<scp>HgrA</scp> is necessary and sufficient to drive hyphal growth in the dimorphic pathogen <i><scp>P</scp>enicillium marneffei</i> . Molecular Microbiology, 2013, 88, 998-1014.	2.5	35
30	The pbrB Gene Encodes a Laccase Required for DHN-Melanin Synthesis in Conidia of Talaromyces (Penicillium) marneffei. PLoS ONE, 2015, 10, e0122728.	2.5	35
31	Genome Sequence of the AIDS-Associated Pathogen Penicillium marneffei (ATCC18224) and Its Near Taxonomic Relative Talaromyces stipitatus (ATCC10500). Genome Announcements, 2015, 3, .	0.8	29
32	The RFX Protein RfxA Is an Essential Regulator of Growth and Morphogenesis in Penicillium marneffei. Eukaryotic Cell, 2010, 9, 578-591.	3.4	26
33	Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands. G3: Genes, Genomes, Genetics, 2013, 3, 1997-2014.	1.8	25
34	The Aspergillus nidulans rcoA Gene Is Required for veA-Dependent Sexual Development. Genetics, 2006, 174, 1685-1688.	2.9	23
35	AreA controls nitrogen source utilisation during both growth programs of the dimorphic fungus Penicillium marneffei. Fungal Biology, 2012, 116, 145-154.	2.5	21
36	<i>Talaromyces marneffei</i> laccase modifies THP-1 macrophage responses. Virulence, 2016, 7, 702-717.	4.4	20

#	Article	IF	CITATIONS
37	β-glucan–dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biology, 2019, 17, e3000113.	5.6	20
38	A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe. BMC Genomics, 2019, 20, 251.	2.8	20
39	Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei. Frontiers in Cellular and Infection Microbiology, 2017, 7, 368.	3.9	18
40	The Fungal Type II Myosin in Penicillium marneffei, MyoB, Is Essential for Chitin Deposition at Nascent Septation Sites but Not Actin Localization. Eukaryotic Cell, 2011, 10, 302-312.	3.4	17
41	Identification of amdX, a new Cys-2-His-2 (C2H2) zinc-finger gene involved in the regulation of the amdS gene of Aspergillus nidulans. Molecular Microbiology, 1997, 23, 591-602.	2.5	16
42	Conditional lethal disruption of TATA-binding protein gene in Penicillium marneffei. Fungal Genetics and Biology, 2005, 42, 893-903.	2.1	15
43	Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen <i>Talaromyces marneffei</i> . MSphere, 2016, 1, .	2.9	14
44	Differentially regulated highâ€affinity iron assimilation systems support growth of the various cell types in the dimorphic pathogen <i>Talaromyces marneffei</i> . Molecular Microbiology, 2016, 102, 715-737.	2.5	11
45	Reproductive competence: a recurrent logic module in eukaryotic development. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130819.	2.6	8
46	A unique aspartyl protease gene expansion in <i>Talaromyces marneffei</i> plays a role in growth inside host phagocytes. Virulence, 2019, 10, 277-291.	4.4	8
47	Antifungal Activity and Molecular Mechanisms of Partial Purified Antifungal Proteins from Rhinacanthus nasutus against Talaromyces marneffei. Journal of Fungi (Basel, Switzerland), 2020, 6, 333.	3.5	8
48	Laboratory Maintenance and Growth of Talaromyces marneffei. Current Protocols in Microbiology, 2020, 56, e97.	6.5	6
49	Organism-wide studies into pathogenicity and morphogenesis in <i>Talaromyces marneffei</i> . Future Microbiology, 2016, 11, 511-526.	2.0	5
50	Calcineurin A Is Essential in the Regulation of Asexual Development, Stress Responses and Pathogenesis in Talaromyces marneffei. Frontiers in Microbiology, 2019, 10, 3094.	3.5	5
51	The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Scientific Reports, 2021, 11, 2334.	3.3	5
52	The Biology of the Thermally Dimorphic Fungal Pathogen Penicillium marneffei. , 2007, , 213-226.		5
53	Signaling Pathways in the Dimorphic Human Fungal Pathogen <i>Penicillium marneffei</i> ., 0, , 441-454.		4
54	A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in <i>Aspergillus nidulans</i> . Genetics, 2016, 204, 1161-1175.	2.9	2

#	Article	IF	CITATIONS
55	Talaromyces marneffei simA Encodes a Fungal Cytochrome P450 Essential for Survival in Macrophages. MSphere, 2018, 3, .	2.9	2
56	Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate. G3: Genes, Genomes, Genetics, 2020, 10, 1375-1391.	1.8	1
57	Morphogenesis and pathogenesis: control of cell identity in a dimorphic pathogen. Microbiology Australia, 2015, 36, 95.	0.4	Ο