Vincent Laurent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298344/publications.pdf

Version: 2024-02-01

430874 395702 1,199 35 18 33 citations h-index g-index papers 36 36 36 1409 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Second-order fear conditioning involves formation of competing stimulus-danger and stimulus-safety associations. Cerebral Cortex, 2023, 33, 1843-1855.	2.9	3
2	Affective Valence Regulates Associative Competition in Pavlovian Conditioning. Frontiers in Behavioral Neuroscience, 2022, 16, 801474.	2.0	3
3	Sensory-Specific Satiety Dissociates General and Specific Pavlovian-Instrumental Transfer. Frontiers in Behavioral Neuroscience, 2022, 16, 877720.	2.0	10
4	The neural substrates of higher-order conditioning: A review. Neuroscience and Biobehavioral Reviews, 2022, 138, 104687.	6.1	6
5	How predictive learning influences choice: Evidence for a GPCRâ€based memory process necessary for Pavlovianâ€instrumental transfer. Journal of Neurochemistry, 2021, 157, 1436-1449.	3.9	5
6	Acquisition and extinction of second-order context conditioned fear: Role of the amygdala. Neurobiology of Learning and Memory, 2021, 183, 107485.	1.9	5
7	General Pavlovian-instrumental transfer tests reveal selective inhibition of the response type – whether Pavlovian or instrumental – performed during extinction. Neurobiology of Learning and Memory, 2021, 183, 107483.	1.9	5
8	Basolateral Amygdala Drives a GPCR-Mediated Striatal Memory Necessary for Predictive Learning to Influence Choice. Neuron, 2020, 106, 855-869.e8.	8.1	16
9	The role of the basolateral amygdala and infralimbic cortex in (re)learning extinction. Psychopharmacology, 2019, 236, 303-312.	3.1	21
10	The infralimbic cortex encodes inhibition irrespective of motivational significance. Neurobiology of Learning and Memory, 2018, 150, 64-74.	1.9	13
11	Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions. Neurobiology of Learning and Memory, 2018, 147, 18-25.	1.9	11
12	The conditions that regulate formation of a false fear memory in rats. Neurobiology of Learning and Memory, 2018, 156, 53-59.	1.9	7
13	Studying Integrative Processing and Prospected Plasticity in Cholinergic Interneurons., 2018,, 221-241.		0
14	Role Played by the Passage of Time in Reversal Learning. Frontiers in Behavioral Neuroscience, 2018, 12, 75.	2.0	3
15	Extinction and Latent Inhibition Involve a Similar Form of Inhibitory Learning that is Stored in and Retrieved from the Infralimbic Cortex. Cerebral Cortex, 2017, 27, 5547-5556.	2.9	25
16	Extinction of relapsed fear does not require the basolateral amygdala. Neurobiology of Learning and Memory, 2017, 139, 149-156.	1.9	6
17	The Lateral Habenula and Its Input to the Rostromedial Tegmental Nucleus Mediates Outcome-Specific Conditioned Inhibition. Journal of Neuroscience, 2017, 37, 10932-10942.	3.6	28
18	Inhibitory Pavlovian–instrumental transfer in humans Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 315-324.	0.5	15

#	Article	IF	Citations
19	Extinction Generates Outcome-Specific Conditioned Inhibition. Current Biology, 2016, 26, 3169-3175.	3.9	20
20	Î'â€Opioid receptors in the accumbens shell mediate the influence of both excitatory and inhibitory predictions on choice. British Journal of Pharmacology, 2015, 172, 562-570.	5.4	22
21	Factual and Counterfactual Action-Outcome Mappings Control Choice between Goal-Directed Actions in Rats. Current Biology, 2015, 25, 1074-1079.	3.9	34
22	The role of opioid processes in reward and decisionâ€making. British Journal of Pharmacology, 2015, 172, 449-459.	5. 4	52
23	î-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice. Journal of Neuroscience, 2014, 34, 1358-1369.	3.6	48
24	Learning-Related Translocation of l´-Opioid Receptors on Ventral Striatal Cholinergic Interneurons Mediates Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 16060-16071.	3.6	59
25	\hat{l} ¼- and \hat{l} -Opioid-Related Processes in the Accumbens Core and Shell Differentially Mediate the Influence of Reward-Guided and Stimulus-Guided Decisions on Choice. Journal of Neuroscience, 2012, 32, 1875-1883.	3.6	74
26	Striatal Cholinergic Interneurons Display Activity-Related Phosphorylation of Ribosomal Protein S6. PLoS ONE, 2012, 7, e53195.	2.5	36
27	Role of the basolateral amygdala in the reinstatement and extinction of fear responses to a previously extinguished conditioned stimulus. Learning and Memory, 2010, 17, 86-96.	1.3	29
28	Blockade of dopamine activity in the nucleus accumbens impairs learning extinction of conditioned fear. Learning and Memory, 2010, 17, 71-75.	1.3	78
29	Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learning and Memory, 2009, 16, 520-529.	1.3	277
30	Infusion of the NMDA receptor antagonist, DL-APV, into the basolateral amygdala disrupts learning to fear a novel and a familiar context as well as relearning to fear an extinguished context. Learning and Memory, 2009, 16, 96-105.	1.3	24
31	The basolateral amygdala is necessary for learning but not relearning extinction of context conditioned fear. Learning and Memory, 2008, 15, 304-314.	1.3	95
32	Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learning and Memory, 2008, 15, 657-666.	1.3	111
33	Rapid reacquisition of fear to a completely extinguished context is replaced by transient impairment with additional extinction training Journal of Experimental Psychology, 2007, 33, 299-313.	1.7	20
34	Subchronic phencyclidine treatment impairs performance of C57BL/6 mice in the attentional set-shifting task. Behavioural Pharmacology, 2004, 15, 141-148.	1.7	37
35	A Novel GPCR-Based Memory Process is Necessary for the Influence of Predictive Learning on Choice. SSRN Electronic Journal, 0, , .	0.4	0

3