
Bruce M Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rosetting Responses of Plasmodium-infected Erythrocytes to Antimalarials. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	1
2	Improving in vitro continuous cultivation of Plasmodium cynomolgi, a model for P. vivax. Parasitology International, 2022, 89, 102589.	1.3	7
3	Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Neglected Tropical Diseases, 2022, 16, e0010492.	3.0	2
4	A Chimeric Plasmodium vivax Merozoite Surface Protein Antibody Recognizes and Blocks Erythrocytic P. cynomolgi Berok Merozoites <i>In Vitro</i> . Infection and Immunity, 2021, 89, .	2.2	4
5	Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: A prospective human splenectomy study. PLoS Medicine, 2021, 18, e1003632.	8.4	60
6	Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nature Microbiology, 2021, 6, 991-999.	13.3	26
7	Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17. 46-56.	3.4	4
8	Plasmodium cynomolgi Berok Growth Inhibition Assay by Thiol-reactive Probe Based Flow Cytometric Measurement. Bio-protocol, 2021, 11, e4147.	0.4	1
9	Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Scientific Reports, 2021, 11, 19905.	3.3	17
10	Plasmodium falciparum rosetting protects schizonts against artemisinin. EBioMedicine, 2021, 73, 103680.	6.1	12
11	Rosettes integrity protects Plasmodium vivax of being phagocytized. Scientific Reports, 2020, 10, 16706.	3.3	13
12	Genetic diversity and neutral selection in Plasmodium vivax erythrocyte binding protein correlates with patient antigenicity. PLoS Neglected Tropical Diseases, 2020, 14, e0008202.	3.0	5
13	Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. ELife, 2020, 9, .	6.0	16
14	Title is missing!. , 2020, 14, e0008202.		0
15	Title is missing!. , 2020, 14, e0008202.		0
16	Title is missing!. , 2020, 14, e0008202.		0
17	Title is missing!. , 2020, 14, e0008202.		0
18	Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nature Communications, 2019, 10, 3635.	12.8	39

#	Article	IF	CITATIONS
19	Sticking for a Cause: The Falciparum Malaria Parasites Cytoadherence Paradigm. Frontiers in Immunology, 2019, 10, 1444.	4.8	62
20	Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nature Microbiology, 2019, 4, 1497-1507.	13.3	48
21	Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials, 2019, 216, 119221.	11.4	48
22	Inhibition of parasite invasion by monoclonal antibody against epidermal growth factor-like domain of Plasmodium vivax merozoite surface protein 1 paralog. Scientific Reports, 2019, 9, 3906.	3.3	12
23	<i>In vitro</i> Antimalarial Evaluations and Cytotoxicity Investigations of <i>Carica papaya</i> Leaves and Carpaine. Natural Product Communications, 2019, 14, 1934578X1901400.	0.5	16
24	Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host and Microbe, 2018, 23, 407-420.e8.	11.0	99
25	Transferrin receptor 1 is a reticulocyte-specific receptor for <i>Plasmodium vivax</i> . Science, 2018, 359, 48-55.	12.6	158
26	Quantitative mass spectrometry of human reticulocytes reveal proteomeâ€wide modifications during maturation. British Journal of Haematology, 2018, 180, 118-133.	2.5	40
27	Importance of Proactive Malaria Case Surveillance and Management in Malaysia. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1709-1713.	1.4	8
28	Microbiome dataset from the upper respiratory tract of patients living with HIV, HIV/TB and TB from Myanmar. Data in Brief, 2018, 21, 354-357.	1.0	1
29	Acquired Resistance to Antituberculosis Drugs. Emerging Infectious Diseases, 2018, 24, 2134-2134.	4.3	2
30	Reduced red blood cell deformability in Plasmodium knowlesi malaria. Blood Advances, 2018, 2, 433-443.	5.2	34
31	Plasmodium vivax Merozoite Surface Protein 1 Paralog as a Mediator of Parasite Adherence to Reticulocytes. Infection and Immunity, 2018, 86, .	2.2	15
32	In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate. Malaria Journal, 2018, 17, 20.	2.3	6
33	The unhealthy attraction of Plasmodium vivax to reticulocytes expressing transferrin receptor 1 (CD71). International Journal for Parasitology, 2017, 47, 379-383.	3.1	15
34	The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Scientific Reports, 2017, 7, 2325.	3.3	21
35	Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development. Journal of Infectious Diseases, 2017, 216, 263-266.	4.0	8
36	Generation, characterization and immunogenicity of a novel chimeric recombinant protein based on Plasmodium vivax AMA-1 and MSP1 19. Vaccine, 2017, 35, 2463-2472.	3.8	15

#	Article	IF	CITATIONS
37	The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites. Trends in Parasitology, 2017, 33, 321-334.	3.3	19
38	Adaptive immunity is essential in preventing recrudescence ofPlasmodium yoeliimalaria parasites after artesunate treatment. Cellular Microbiology, 2017, 19, e12763.	2.1	7
39	Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood, 2017, 130, 1357-1363.	1.4	27
40	In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial. Molecules, 2017, 22, 2102.	3.8	12
41	Singapore's Anopheles sinensis Form A is susceptible to Plasmodium vivax isolates from the western Thailand–Myanmar border. Malaria Journal, 2017, 16, 465.	2.3	8
42	New insights into the Plasmodium vivax transcriptome using RNA-Seq. Scientific Reports, 2016, 6, 20498.	3.3	65
43	Invasion characteristics of a Plasmodium knowlesi line newly isolated from a human. Scientific Reports, 2016, 6, 24623.	3.3	24
44	<i>Ex Vivo</i> Maturation Assay for Testing Antimalarial Sensitivity of Rodent Malaria Parasites. Antimicrobial Agents and Chemotherapy, 2016, 60, 6859-6866.	3.2	5
45	Genomic Analysis Reveals a Common Breakpoint in Amplifications of the <i>Plasmodium vivax</i> Multidrug Resistance 1 Locus in Thailand. Journal of Infectious Diseases, 2016, 214, 1235-1242.	4.0	29
46	A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609. Journal of Infectious Diseases, 2016, 213, 100-104.	4.0	35
47	Reply to "Flow Cytometry for Antimalarial Drug Testing: More than Meets the Eye― Journal of Clinical Microbiology, 2016, 54, 818-819.	3.9	0
48	Unambiguous determination of Plasmodium vivax reticulocyte invasion by flow cytometry. International Journal for Parasitology, 2016, 46, 31-39.	3.1	22
49	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.7	62
50	Rheopathologic Consequence of Plasmodium vivax Rosette Formation. PLoS Neglected Tropical Diseases, 2016, 10, e0004912.	3.0	20
51	Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood, 2015, 125, 1314-1324.	1.4	157
52	Preclinical Assessment of Viral Vectored and Protein Vaccines Targeting the Duffy-Binding Protein Region II of Plasmodium Vivax. Frontiers in Immunology, 2015, 6, 348.	4.8	44
53	Methylene blue inhibits the asexual development of vivax malaria parasites from a region of increasing chloroquine resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 124-129.	3.0	23
54	Immunization with the MAEBL M2 Domain Protects against Lethal Plasmodium yoelii Infection. Infection and Immunity, 2015, 83, 3781-3792.	2.2	16

#	Article	IF	CITATIONS
55	Comparison between Flow Cytometry, Microscopy, and Lactate Dehydrogenase-Based Enzyme-Linked Immunosorbent Assay for Plasmodium falciparum Drug Susceptibility Testing under Field Conditions. Journal of Clinical Microbiology, 2015, 53, 3296-3303.	3.9	10
56	Invasion-Inhibitory Antibodies Elicited by Immunization with Plasmodium vivax Apical Membrane Antigen-1 Expressed in Pichia pastoris Yeast. Infection and Immunity, 2014, 82, 1296-1307.	2.2	59
57	Validation of a chloroquine-induced cell death mechanism for clinical use against malaria. Cell Death and Disease, 2014, 5, e1305-e1305.	6.3	12
58	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	3.2	122
59	Therapeutic disruption of Plasmodium vivax infected red cell deformability. Malaria Journal, 2014, 13, .	2.3	2
60	Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitology International, 2014, 63, 187-194.	1.3	8
61	Paucity of Plasmodium vivax Mature Schizonts in Peripheral Blood Is Associated With Their Increased Cytoadhesive Potential. Journal of Infectious Diseases, 2014, 209, 1403-1407.	4.0	55
62	Small Molecule Targeting Malaria Merozoite Surface Protein-1 (MSP-1) Prevents Host Invasion of Divergent Plasmodial Species. Journal of Infectious Diseases, 2014, 210, 1616-1626.	4.0	36
63	Glycophorin C (CD236R) mediates vivax malaria parasite rosetting to normocytes. Blood, 2014, 123, e100-e109.	1.4	44
64	Characterization of the Commercially-Available Fluorescent Chloroquine-BODIPY Conjugate, LynxTag-CQGREEN, as a Marker for Chloroquine Resistance and Uptake in a 96-Well Plate Assay. PLoS ONE, 2014, 9, e110800.	2.5	5
65	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	27.8	377
66	Field-Based Flow Cytometry for <i>Ex Vivo</i> Characterization of Plasmodium vivax and P. falciparum Antimalarial Sensitivity. Antimicrobial Agents and Chemotherapy, 2013, 57, 5170-5174.	3.2	18
67	A Whole Cell Pathway Screen Reveals Seven Novel Chemosensitizers to Combat Chloroquine Resistant Malaria. Scientific Reports, 2013, 3, 1734.	3.3	23
68	Effective Preparation of Plasmodium vivax Field Isolates for High-Throughput Whole Genome Sequencing. PLoS ONE, 2013, 8, e53160.	2.5	26
69	Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3. PLoS ONE, 2013, 8, e56061.	2.5	20
70	Giemsa-Stained Wet Mount Based Method for Reticulocyte Quantification: A Viable Alternative in Resource Limited or Malaria Endemic Settings. PLoS ONE, 2013, 8, e60303.	2.5	11
71	Significant Biochemical, Biophysical and Metabolic Diversity in Circulating Human Cord Blood Reticulocytes. PLoS ONE, 2013, 8, e76062.	2.5	114
72	On the pathogenesis of Plasmodium vivax malaria: Perspectives from the Brazilian field. International Journal for Parasitology, 2012, 42, 1099-1105.	3.1	47

#	Article	IF	CITATIONS
73	Human ex vivo studies on asexual Plasmodium vivax: The best way forward. International Journal for Parasitology, 2012, 42, 1063-1070.	3.1	40
74	Atomic Force Microscopy of Plasmodium-Infected Red Blood Cells: Detecting and Localizing Single Molecular Recognition Events. Methods in Molecular Biology, 2012, 923, 299-305.	0.9	2
75	Cerebral malaria. Virulence, 2012, 3, 193-201.	4.4	118
76	Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots. Malaria Journal, 2012, 11, 339.	2.3	39
77	Cryopreserved Plasmodium vivax and cord blood reticulocytes can be used for invasion and short term culture. International Journal for Parasitology, 2012, 42, 155-160.	3.1	44
78	Genetic Diversity in New Members of the Reticulocyte Binding Protein Family in Thai Plasmodium vivax Isolates. PLoS ONE, 2012, 7, e32105.	2.5	12
79	Long-Term Humoral and Cellular Immune Responses Elicited by a Heterologous Plasmodium vivax Apical Membrane Antigen 1 Protein Prime/Adenovirus Boost Immunization Protocol. Infection and Immunity, 2011, 79, 3642-3652.	2.2	32
80	A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Scientific Reports, 2011, 1, 118.	3.3	175
81	A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood, 2011, 118, e74-e81.	1.4	120
82	Chloroquine resistant vivax malaria in a pregnant woman on the western border of Thailand. Malaria Journal, 2011, 10, 113.	2.3	53
83	Considerations on the use of nucleic acid-based amplification for malaria parasite detection. Malaria Journal, 2011, 10, 323.	2.3	34
84	Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics, 2011, 12, 391.	2.8	135
85	In VivoandIn VitroEfficacy of Chloroquine againstPlasmodium malariaeandP. ovalein Papua, Indonesia. Antimicrobial Agents and Chemotherapy, 2011, 55, 197-202.	3.2	26
86	Dihydroartemisinin-Piperaquine Versus Chloroquine in the Treatment of Plasmodium vivax Malaria in Thailand: A Randomized Controlled Trial. Clinical Infectious Diseases, 2011, 53, 977-984.	5.8	71
87	The Presence of Leukocytes in <i>Ex Vivo</i> Assays Significantly Increases the 50-Percent Inhibitory Concentrations of Artesunate and Chloroquine against <i>Plasmodium vivax</i> and <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1300-1304.	3.2	10
88	Methotrexate Is Highly Potent Against Pyrimethamine-Resistant Plasmodium vivax. Journal of Infectious Diseases, 2011, 203, 207-210.	4.0	14
89	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
90	High density of â€~spiky' excrescences covering the surface of an erythrocyte infected with Plasmodium malariae. British Journal of Haematology, 2010, 151, 1-1.	2.5	7

#	Article	IF	CITATIONS
91	Randomized, Double-Blind Study of the Safety, Tolerability, and Efficacy of Tafenoquine versus Mefloquine for Malaria Prophylaxis in Nonimmune Subjects. Antimicrobial Agents and Chemotherapy, 2010, 54, 792-798.	3.2	106
92	<i>In Vitro</i> Activity of Pyronaridine against Multidrug-Resistant <i>Plasmodium falciparum</i> and <i>Plasmodium vivax</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5146-5150.	3.2	36
93	<i>Plasmodium vivax</i> Susceptibility to Ferroquine. Antimicrobial Agents and Chemotherapy, 2010, 54, 2228-2230.	3.2	17
94	On the Cytoadhesion of <i>Plasmodium vivax</i> –Infected Erythrocytes. Journal of Infectious Diseases, 2010, 202, 638-647.	4.0	259
95	In Vivo and In Vitro Efficacy of Amodiaquine Monotherapy for Treatment of Infection by Chloroquine-Resistant <i>Plasmodium vivax</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 1094-1099.	3.2	22
96	High Deformability of <i>Plasmodium vivax</i> –Infected Red Blood Cells under Microfluidic Conditions. Journal of Infectious Diseases, 2009, 199, 445-450.	4.0	107
97	The pathophysiology of vivax malaria. Trends in Parasitology, 2009, 25, 220-227.	3.3	347
98	Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malaria Journal, 2009, 8, 115.	2.3	86
99	TaqMan real-time PCR assay for specific detection of Opisthorchis viverrini DNA in Thai patients with hepatocellular carcinoma and cholangiocarcinoma. Experimental Parasitology, 2008, 119, 217-224.	1.2	19
100	Plasmodium vivax trophozoites insensitive to chloroquine. Malaria Journal, 2008, 7, 94.	2.3	55
101	Amplification of <i>pvmdr1</i> Associated with Multidrugâ€Resistant <i>Plasmodium vivax</i> . Journal of Infectious Diseases, 2008, 198, 1558-1564.	4.0	117
102	Stronger Activity of Human Immunodeficiency Virus Type 1 Protease Inhibitors against Clinical Isolates of <i>Plasmodium vivax</i> than against Those of <i>P. falciparum</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 2435-2441.	3.2	34
103	Determinants of In Vitro Drug Susceptibility Testing of <i>Plasmodium vivax</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1040-1045.	3.2	119
104	The transcriptome of <i>Plasmodium vivax</i> reveals divergence and diversity of transcriptional regulation in malaria parasites. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16290-16295.	7.1	234
105	Comparison of three molecular methods for the detection and speciation of Plasmodium vivax and Plasmodium falciparum. Malaria Journal, 2007, 6, 124.	2.3	64
106	Chloroquine Resistant Plasmodium vivax: In Vitro Characterisation and Association with Molecular Polymorphisms. PLoS ONE, 2007, 2, e1089.	2.5	187
107	Plasmodium vivax: Isotopic, PicoGreen, and microscopic assays for measuring chloroquine sensitivity in fresh and cryopreserved isolates. Experimental Parasitology, 2006, 114, 34-39.	1.2	47
108	Plasmodium vivax genetic diversity: microsatellite length matters. Trends in Parasitology, 2006, 22, 399-401.	3.3	25

#	Article	IF	CITATIONS
109	AMINO ACID MUTATIONS IN PLASMODIUM VIVAX DHFR AND DHPS FROM SEVERAL GEOGRAPHICAL REGIONS AND SUSCEPTIBILITY TO ANTIFOLATE DRUGS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 617-621.	1.4	76
110	Amino acid mutations in Plasmodium vivax DHFR and DHPS from several geographical regions and susceptibility to antifolate drugs. American Journal of Tropical Medicine and Hygiene, 2006, 75, 617-21.	1.4	52
111	Simple In Vitro Assay for Determining the Sensitivity of Plasmodium vivax Isolates from Fresh Human Blood to Antimalarials in Areas where P. vivax Is Endemic. Antimicrobial Agents and Chemotherapy, 2003, 47, 170-173.	3.2	95
112	An Outbreak of Malaria in a Forward Battalion on Active Service in East Timor. Military Medicine, 2003, 168, 457-459.	0.8	14
113	Lack of in vitro effect of ivermectin on Plasmodium falciparum. Southeast Asian Journal of Tropical Medicine and Public Health, 2003, 34, 552-3.	1.0	10
114	Levels of Chloroquine Resistance inPlasmodium falciparumAre Determined by Loci Other thanpfcrtandpfmdr1. Journal of Infectious Diseases, 2002, 185, 405-406.	4.0	44
115	Point Source Inoculation ofMesocyclops(Copepoda: Cyclopidae) Gives Widespread Control ofOchlerotatusandAedes(Diptera: Culicidae) Immatures in Service Manholes and Pits in North Queensland, Australia. Journal of Medical Entomology, 2002, 39, 469-474.	1.8	15
116	Epidemiological Significance of Subterranean <i>Aedes aegypti</i> (Diptera: Culicidae) Breeding Sites to Dengue Virus Infection in Charters Towers, 1993. Journal of Medical Entomology, 2002, 39, 143-145.	1.8	28
117	Sequence Polymorphisms inpfcrtAre Strongly Associated with Chloroquine Resistance inPlasmodium falciparum. Journal of Infectious Diseases, 2001, 183, 1543-1545.	4.0	56
118	Survival of <l>Aedes aegypti</l> (Diptera: Culicidae) Eggs in Surface and Subterranean Breeding Sites During the Northern Queensland Dry Season. Journal of Medical Entomology, 2001, 38, 441-445.	1.8	64
119	Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti. Journal of the American Mosquito Control Association, 2001, 17, 124-6.	0.7	4
120	The Importance of Subterranean Mosquito Habitat to Arbovirus Vector Control Strategies in North Queensland, Australia. Journal of Medical Entomology, 2000, 37, 846-853.	1.8	73
121	Calibrated Funnel Trap for Quantifying Mosquito (Diptera: Culicidae) Abundance in Wells. Journal of Medical Entomology, 1999, 36, 851-855.	1.8	18
122	Surveillance of the mosquito Aedes aegypti and its biocontrol with the copepod Mesocyclops aspericornis in Australian wells and gold mines. Medical and Veterinary Entomology, 1996, 10, 155-160.	1.5	51